hepi
The HEPi package aims to automize cluster computations for parameter scans with the option to produce plots.
Subpackages
Submodules
Package Contents
Classes
Computation orders. |
|
Input for computation and scans. |
|
Input for computation and scans. |
|
Computation orders. |
|
Input for computation and scans. |
|
General result class. All uncertainties are of numerical origin. |
|
Input for computation and scans. |
|
Computation orders. |
|
General result class. All uncertainties are of numerical origin. |
|
Abstract class that is similar to a dictionary but with fixed keys. |
|
Functions
|
|
|
Converts a LHAPDF name to the sets id. |
Get the input directory. |
|
Get the output directory. |
|
|
Gets the command prefix. |
|
Sets the input directory. |
|
Sets the output directory. |
|
Sets the command prefix. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Updates dependent parameters in Input i. |
|
Scans a variable var over rrange in input_list. |
|
Magically scans the variables passed to this function. |
|
Scans scale by varying mu_f and mu_r. |
|
Scans scale by varying mu_f and mu_r by factors of two excluding relative factors of 4. |
|
Only keep the inputs where the condition is true. |
|
Remove elements in list which satisfy condition. |
|
Applies the values of dicts if the key value pairs in kwargs agree with a member of the list input_list. |
|
Logarithmic invariant_mass scan close to the production threshold. |
|
|
|
Scans the PDG identified masses in varis over rrange in the list input_list. |
|
Scans the PDG identified mass var over rrange in the list l. |
|
Scan a generic |
|
Scan a generic slha variable. |
|
Scans NLO PDF sets. |
|
Last key is the value to be interpolated, while the rest are cooridnates. |
|
Last key is the value to be interpolated, while the rest are cooridnates. |
|
|
|
Convert a dict of list`s to a `pandas.DataFrame. |
|
Convert a list of objects into a dictionary of lists. |
|
Load xsec data from json in to something that works within hepi's plotting. |
|
|
|
|
|
Convert a dict of list`s to a `pandas.DataFrame. |
|
|
|
|
|
Saves a dict of list`s to `filename as latex table. |
|
Saves a dict of list`s to `filename as csv table. |
|
Saves a dict of list`s to `filename as json. |
Get the output directory. |
|
|
Get the latex name of a particle. |
|
Sets the title on axis axe. |
|
Plot energy on the x-axis. |
|
|
|
|
|
|
|
|
|
Get the mass of particle with id iid out of the list in the "slha" element in the dict. |
|
|
|
|
|
|
|
Creates a plot based on the values in x`and `y. |
|
|
|
Examples |
|
Scatter map 2d. |
|
|
|
Creates a scale variance plot with 5 panels (xline). |
|
Creates a scale variance plot with 3 panels (ystacked). |
|
Initialze subplot for Ratio/K plots with another figure below. |
|
Just like pdf_error but over a list of ordernames. |
|
|
|
Computes Parton Density Function (PDF) uncertainties through |
|
Just like scale_error but over a list of ordernames. |
|
|
|
Computes seven-point scale uncertainties from the results where the renormalization and factorization scales are varied by factors of 2 and relative factors of four are excluded (cf. |
|
Just like combine_error but over a list of ordernames. |
|
Combines seven-point scale uncertainties and pdf uncertainties from the results by Pythagorean addition. |
|
|
|
|
|
|
Get the input directory. |
|
Get the output directory. |
|
|
Gets the command prefix. |
|
Convert a dict of list`s to a `pandas.DataFrame. |
|
Convert a list of objects into a dictionary of lists. |
|
Creates a sha256 hash from the objects string representation. |
|
Convert a list of objects into a dictionary of lists. |
|
Convert a dict of list`s to a `pandas.DataFrame. |
|
Creates a sha256 hash from the objects string representation. |
|
Converts a LHAPDF name to the sets id. |
|
Attributes
Input directory. |
|
Output directory. |
|
Prefix for run commands. |
|
- class hepi.Order[source]
Bases:
enum.IntEnum
Computation orders.
Initialize self. See help(type(self)) for accurate signature.
- LO = 0
Leading Order
- NLO = 1
Next-to-Leading Order
- NLO_PLUS_NLL = 2
Next-to-Leading Order plus Next-to-Leading Logarithms
- aNNLO_PLUS_NNLL = 3
Approximate Next-to-next-to-Leading Order plus Next-to-next-to-Leading Logarithms
- hepi.order_to_string(o, json_style=False, no_macros=False)[source]
- Parameters:
o (Order) –
- Return type:
str
- hepi.lhapdf_name_to_id(name)[source]
Converts a LHAPDF name to the sets id.
- Parameters:
name (str) – LHAPDF set name.
- Returns:
id of the LHAPDF set.
- Return type:
int
Examples
>>> lhapdf_name_to_id("CT14lo") 13200
- hepi.set_input_dir(ind)[source]
Sets the input directory.
- Parameters:
ind (str) – new input directory.
- hepi.set_output_dir(outd, create=True)[source]
Sets the output directory.
- Parameters:
outd (str) – new output directory. create (bool): create directory if not existing
create (bool) –
- class hepi.Input(order, energy, particle1, particle2, slha, pdf_lo, pdf_nlo, mu_f=1.0, mu_r=1.0, pdfset_lo=0, pdfset_nlo=0, precision=0.001, max_iters=50, invariant_mass='auto', result='total', pt='auto', id='', model='', update=True)[source]
Bases:
hepi.util.DictData
Input for computation and scans.
- Variables:
order (
Order
) – LO, NLO or NLO+NLL computation.energy (int) – CMS energy in GeV.
energyhalf (int) – Halfed energy.
particle1 (int) – PDG identifier of the first final state particle.
particle2 (int) – PDG identifier of the second final state particle.
slha (str) – File path of for the base slha. Modified slha files will be used if a scan requires a change of the input.
pdf_lo (str) – LO PDF name.
pdf_nlo (str) – NLO PDF name.
pdfset_lo (int) – LO PDF member/set id.
pdfset_nlo (int) – NLO PDF member/set id.
pdf_lo_id (int) – LO PDF first member/set id.
pdf_nlo_id (int) – NLO PDF first member/set id.
mu (double) – central scale factor.
mu_f (double) – Factorization scale factor.
mu_r (double) – Renormalization scale factor.
precision (double) – Desired numerical relative precision.
max_iters (int) – Upper limit on integration iterations.
invariant_mass (str) – Invariant mass mode ‘auto = sqrt((p1+p2)^2)’ else value.
pt (str) – Transverse Momentum mode ‘auto’ or value.
result (str) – Result type ‘total’/’pt’/’ptj’/’m’.
id (str) – Set an id of this run.
model (str) – Path for MadGraph model.
update (bool) – Update dependent mu else set to zero.
- Parameters:
order (hepi.order.Order) –
energy (float) –
particle1 (int) –
particle2 (int) –
slha (str) –
pdf_lo (str) –
pdf_nlo (str) –
- hepi.update_slha(i)[source]
Updates dependent parameters in Input i.
Mainly concerns the mu value used by madgraph.
- Parameters:
i (Input) –
- hepi.scan(input_list, var, rrange)[source]
Scans a variable var over rrange in input_list.
Note
This function does not ensure that dependent vairables are updated (see energyhalf in Examples).
- Parameters:
input_list (
list
ofInput
) – Input parameters that get scanned each.var (str) – Scan variable name.
rrange (Iterable) – Range of var to be scanned.
- Returns:
Modified list with scan runs added.
- Return type:
list
ofInput
Examples
>>> li = [Input(Order.LO, 13000, 1000022,1000022, "None", "CT14lo","CT14lo",update=False)] >>> li = scan(li,"energy",range(10000,13000,1000)) >>> for e in li: ... print(e) {'order': <Order.LO: 0>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} >>> for e in scan(li,"order",[Order.LO,Order.NLO,Order.NLO_PLUS_NLL]): ... print(e) {'order': <Order.LO: 0>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO_PLUS_NLL: 2>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO_PLUS_NLL: 2>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO_PLUS_NLL: 2>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0}
- hepi.scan_multi(li, **kwargs)[source]
Magically scans the variables passed to this function.
Examples
>>> oli = [Input(Order.LO, 13000, 1000022,1000022, "None", "CT14lo","CT14lo",update=False)] >>> li = scan_multi(oli,energy=range(10000,13000,1000)) >>> for e in li: ... print(e) {'order': <Order.LO: 0>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} >>> for e in scan_multi(oli,energy=range(10000,13000,1000),order=[Order.LO,Order.NLO,Order.NLO_PLUS_NLL]): ... print(e) {'order': <Order.LO: 0>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO_PLUS_NLL: 2>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO_PLUS_NLL: 2>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO_PLUS_NLL: 2>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0}
- hepi.scan_scale(l, rrange=3, distance=2.0)[source]
Scans scale by varying mu_f and mu_r.
They take rrange values from 1/distance to distance in lograthmic spacing. Only points with mu_f`=`mu_r or mu_r/f`=1 or `mu_r/f`=`distance or mu_r/f`=1/`distance are returned.
Examples
>>> li = [Input(Order.LO, 13000, 1000022,1000022, "None", "CT14lo","CT14lo",update=False)] >>> for e in scan_scale(li): ... print(e) {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 0.5, 'mu_r': 0.5, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 0.5, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 0.5, 'mu_r': 2.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 0.5, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 2.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 2.0, 'mu_r': 0.5, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 2.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 2.0, 'mu_r': 2.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0}
- Parameters:
l (List[Input]) –
- hepi.scan_seven_point(input_list)[source]
Scans scale by varying mu_f and mu_r by factors of two excluding relative factors of 4.
Examples
>>> li = [Input(Order.LO, 13000, 1000022,1000022, "None", "CT14lo","CT14lo",update=False)] >>> for e in scan_seven_point(li): ... print(e) {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 0.5, 'mu_r': 0.5, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 0.5, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 0.5, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 2.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 2.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 2.0, 'mu_r': 2.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0}
- Parameters:
input_list (List[Input]) –
- hepi.keep_where(input_list, condition)[source]
Only keep the inputs where the condition is true.
Inversion of the remove_where function.
- Parameters:
input_list (List[Input]) – List[Input] The list of inputs to filter.
condition – Callable[[Input.__dict__], bool] The condition to filter on.
- hepi.remove_where(input_list, condition, **kwargs)[source]
Remove elements in list which satisfy condition.
- Parameters:
input_list (List[Input]) – List[Input] The list of inputs to filter.
condition – Callable[[Input.__dict__], bool] The condition to filter on.
Examples
>>> li = scan_multi([Input(Order.LO, 13000, 1000022,1000022, "None", "CT14lo","CT14lo",update=False)],energy=range(10000,13000,1000)) >>> for e in remove_where(li,lambda dict : (dict["energy"] == 10000 or dict["energy"] == 11000)): ... print(e) {'order': <Order.LO: 0>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0}
- hepi.change_where(input_list, dicts, **kwargs)[source]
Applies the values of dicts if the key value pairs in kwargs agree with a member of the list input_list.
The changes only applied to the matching list members.
Examples
>>> li = scan_multi([Input(Order.LO, 13000, 1000022,1000022, "None", "CT14lo","CT14lo",update=False)],energy=range(10000,13000,1000)) >>> for e in change_where(li,{'order':Order.NLO},energy=11000): ... print(e) {'order': <Order.LO: 0>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 12000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} >>> li = scan_multi([Input(Order.LO, 13000, 1000022,1000022, "None", "CT14lo","CT14lo",update=False)],energy=range(10000,12000,1000),mu_f=range(1,3)) >>> for e in change_where(li,{'order':Order.NLO},energy=11000,mu_f=1): ... print(e) {'order': <Order.LO: 0>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 10000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 2, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 1, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.LO: 0>, 'energy': 11000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14lo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13200, 'mu_f': 2, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0}
- Parameters:
input_list (List[Input]) –
dicts (dict) –
- hepi.scan_invariant_mass(input_list, diff, points, low=0.001)[source]
Logarithmic invariant_mass scan close to the production threshold.
- Parameters:
input_list (List[Input]) –
- hepi.masses_scan(input_list, varis, rrange, diff_L_R=None, negate=None)[source]
Scans the PDG identified masses in varis over rrange in the list input_list. diff_L_R allows to set a fixed difference between masses of left- and right-handed particles.
- hepi.mass_scan(input_list, var, rrange, diff_L_R=None)[source]
Scans the PDG identified mass var over rrange in the list l. diff_L_R allows to set a fixed difference between masses of left- and right-handed particles.
- hepi.scan_pdf(input_list)[source]
Scans NLO PDF sets.
The PDF sets are infered from lhapdf.getPDFSet with the argument of pdfset_nlo.
Examples
>>> li = [Input(Order.NLO, 13000, 1000022,1000022, "None", "CT14lo","CT14nlo",update=False)] >>> for e in scan_pdf(li): ... print(e) {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 0, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 1, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 2, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 3, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 4, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 5, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 6, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 7, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 8, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 9, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 10, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 11, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 12, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 13, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 14, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 15, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 16, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 17, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 18, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 19, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 20, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 21, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 22, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 23, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 24, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 25, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 26, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 27, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 28, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 29, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 30, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 31, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 32, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 33, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 34, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 35, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 36, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 37, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 38, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 39, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 40, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 41, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 42, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 43, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 44, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 45, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 46, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 47, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 48, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 49, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 50, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 51, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 52, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 53, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 54, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 55, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0} {'order': <Order.NLO: 1>, 'energy': 13000, 'energyhalf': 6500.0, 'particle1': 1000022, 'particle2': 1000022, 'slha': 'None', 'pdf_lo': 'CT14lo', 'pdfset_lo': 0, 'pdf_nlo': 'CT14nlo', 'pdfset_nlo': 56, 'pdf_lo_id': 13200, 'pdf_nlo_id': 13100, 'mu_f': 1.0, 'mu_r': 1.0, 'precision': 0.001, 'max_iters': 50, 'invariant_mass': 'auto', 'pt': 'auto', 'result': 'total', 'id': '', 'model': '', 'mu': 0.0}
- Parameters:
input_list (List[Input]) –
- hepi.interpolate_1d(df, x, y, xrange, only_interpolation=True)[source]
Last key is the value to be interpolated, while the rest are cooridnates.
- Parameters:
df (pandas.DataFrame) – results
- hepi.interpolate_2d(df, x, y, z, xrange, yrange, only_interpolation=True, **kwargs)[source]
Last key is the value to be interpolated, while the rest are cooridnates.
- Parameters:
df (pandas.DataFrame) – results
- class hepi.Input(order, energy, particle1, particle2, slha, pdf_lo, pdf_nlo, mu_f=1.0, mu_r=1.0, pdfset_lo=0, pdfset_nlo=0, precision=0.001, max_iters=50, invariant_mass='auto', result='total', pt='auto', id='', model='', update=True)[source]
Bases:
hepi.util.DictData
Input for computation and scans.
- Variables:
order (
Order
) – LO, NLO or NLO+NLL computation.energy (int) – CMS energy in GeV.
energyhalf (int) – Halfed energy.
particle1 (int) – PDG identifier of the first final state particle.
particle2 (int) – PDG identifier of the second final state particle.
slha (str) – File path of for the base slha. Modified slha files will be used if a scan requires a change of the input.
pdf_lo (str) – LO PDF name.
pdf_nlo (str) – NLO PDF name.
pdfset_lo (int) – LO PDF member/set id.
pdfset_nlo (int) – NLO PDF member/set id.
pdf_lo_id (int) – LO PDF first member/set id.
pdf_nlo_id (int) – NLO PDF first member/set id.
mu (double) – central scale factor.
mu_f (double) – Factorization scale factor.
mu_r (double) – Renormalization scale factor.
precision (double) – Desired numerical relative precision.
max_iters (int) – Upper limit on integration iterations.
invariant_mass (str) – Invariant mass mode ‘auto = sqrt((p1+p2)^2)’ else value.
pt (str) – Transverse Momentum mode ‘auto’ or value.
result (str) – Result type ‘total’/’pt’/’ptj’/’m’.
id (str) – Set an id of this run.
model (str) – Path for MadGraph model.
update (bool) – Update dependent mu else set to zero.
- Parameters:
order (hepi.order.Order) –
energy (float) –
particle1 (int) –
particle2 (int) –
slha (str) –
pdf_lo (str) –
pdf_nlo (str) –
- hepi.order_to_string(o, json_style=False, no_macros=False)[source]
- Parameters:
o (Order) –
- Return type:
str
- hepi.DL2DF(ld)[source]
Convert a dict of list`s to a `pandas.DataFrame.
- Parameters:
ld (dict) –
- Return type:
pandas.DataFrame
- hepi.LD2DL(l, actual_dict=False)[source]
Convert a list of objects into a dictionary of lists.
The values of each object are first converted to a dict through the __dict__ attribute.
- Parameters:
l (List) – list of objects.
actual_dict (bool) – objects are already dicts
- Returns:
dictionary of numpy arrays.
- Return type:
dict
Examples
>>> class Param: ... def __init__(self,a,b,c): ... self.a = a ... self.b = b ... self.c = c >>> LD2DL([ Param(1,2,3), Param(4,5,6) , Param(7,8,9) ]) {'a': array([1, 4, 7]), 'b': array([2, 5, 8]), 'c': array([3, 6, 9])}
- hepi.load_json_with_metadata(file)[source]
Load xsec data from json in to something that works within hepi’s plotting.
- Parameters:
f – readable object, e.g. open(filepath:str).
dimensions (int) – 1 or 2 currently supported.
- hepi.load
- class hepi.Order[source]
Bases:
enum.IntEnum
Computation orders.
Initialize self. See help(type(self)) for accurate signature.
- LO = 0
Leading Order
- NLO = 1
Next-to-Leading Order
- NLO_PLUS_NLL = 2
Next-to-Leading Order plus Next-to-Leading Logarithms
- aNNLO_PLUS_NNLL = 3
Approximate Next-to-next-to-Leading Order plus Next-to-next-to-Leading Logarithms
- hepi.order_to_string(o, json_style=False, no_macros=False)[source]
- Parameters:
o (Order) –
- Return type:
str
- hepi.DL2DF(ld)[source]
Convert a dict of list`s to a `pandas.DataFrame.
- Parameters:
ld (dict) –
- Return type:
pandas.DataFrame
- hepi.write_latex_table_transposed(dict_list, t, fname, scale=True, pdf=True, yscale=1.0, max_rows=None)[source]
- hepi.write_latex(dict_list, t, key, fname, scale=True, pdf=True, yscale=1.0)[source]
Saves a dict of list`s to `filename as latex table.
- hepi.write_csv(dict_list, filename)[source]
Saves a dict of list`s to `filename as csv table.
Examples
>>> import hepi >>> import urllib.request >>> dl = hepi.load(urllib.request.urlopen( ... "https://raw.githubusercontent.com/fuenfundachtzig/xsec/master/json/pp13_hinosplit_N2N1_NLO%2BNLL.json" ... ),dimensions=2) >>> with open("test.csv", 'w') as f: ... hepi.write_csv(dl, f) >>> with open('test.csv', 'r') as f: ... print(f.read()) order,energy,energyhalf,particle1,particle2,slha,pdf_lo,pdfset_lo,pdf_nlo,pdfset_nlo,pdf_lo_id,pdf_nlo_id,mu_f,mu_r,precision,max_iters,invariant_mass,pt,result,id,model,mu,runner,N2,N1,NLO_PLUS_NLL_NOERR,NLO_PLUS_NLL_COMBINED 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,81.5,80.0,7.746232,7.746+/-0.023 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,82.0,80.0,7.646339,7.646+/-0.024 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,83.0,80.0,7.450843,7.451+/-0.024 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,85.0,80.0,7.079679,7.080+/-0.024 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,90.0,80.0,6.248933,6.249+/-0.025 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,95.0,80.0,5.53691,5.537+/-0.025 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,100.0,60.0,7.613015,7.613+/-0.024 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,100.0,80.0,4.924686,4.925+/-0.025 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,101.5,100.0,3.201246,3.201+/-0.026 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,102.0,100.0,3.169948,3.170+/-0.027 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,103.0,100.0,3.109625,3.110+/-0.027 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,105.0,100.0,2.993584,2.994+/-0.027 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,110.0,100.0,2.725548,2.726+/-0.027 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,110.0,80.0,3.933723,3.934+/-0.026 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,115.0,100.0,2.485705,2.486+/-0.028 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,120.0,100.0,2.271269,2.271+/-0.028 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,120.0,60.0,4.504708,4.505+/-0.025 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,120.0,80.0,3.180276,3.180+/-0.027 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,126.5,125.0,1.383578,1.384+/-0.030 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,127.0,125.0,1.373155,1.373+/-0.030 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,128.0,125.0,1.352257,1.352+/-0.031 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,130.0,100.0,1.905211,1.905+/-0.029 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,130.0,125.0,1.3128,1.313+/-0.031 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,135.0,125.0,1.219904,1.220+/-0.031 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,140.0,100.0,1.608394,1.608+/-0.029 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,140.0,125.0,1.134614,1.135+/-0.031 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,140.0,80.0,2.142151,2.142+/-0.028 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,145.0,125.0,1.056242,1.056+/-0.032 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,152.0,150.0,0.699925,0.700+/-0.034 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,153.0,150.0,0.691281,0.691+/-0.034 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,155.0,125.0,0.917808,0.918+/-0.032 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,155.0,150.0,0.674484,0.674+/-0.034 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,160.0,100.0,1.165897,1.166+/-0.031 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,160.0,150.0,0.6345,0.634+/-0.034 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,165.0,125.0,0.800281,0.800+/-0.033 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,165.0,150.0,0.597167,0.597+/-0.034 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,170.0,150.0,0.562441,0.562+/-0.035 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,178.0,175.0,0.391649,0.39+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,180.0,150.0,0.499633,0.500+/-0.035 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,180.0,175.0,0.383418,0.38+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,185.0,125.0,0.614697,0.615+/-0.034 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,185.0,175.0,0.363707,0.36+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,190.0,150.0,0.444892,0.44+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,190.0,175.0,0.345126,0.35+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,195.0,175.0,0.327625,0.33+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,202.0,200.0,0.2403,0.24+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,203.0,200.0,0.238047,0.24+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,205.0,200.0,0.233619,0.23+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,210.0,150.0,0.354984,0.35+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,210.0,200.0,0.222947,0.22+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,215.0,200.0,0.212818,0.21+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,220.0,200.0,0.203209,0.20+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,230.0,200.0,0.18536,0.19+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,230.0,225.0,0.150189,0.15+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,235.0,225.0,0.14399,0.14+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,240.0,200.0,0.169381,0.17+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,240.0,225.0,0.138083,0.14+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,252.0,250.0,0.102807,0.10+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,253.0,250.0,0.102017,0.10+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,255.0,250.0,0.100453,0.10+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,260.0,200.0,0.141817,0.14+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,260.0,250.0,0.096658,0.10+/-0.04 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,265.0,250.0,0.092955,0.09+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,270.0,250.0,0.089536,0.09+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,280.0,250.0,0.082931,0.08+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,290.0,250.0,0.076979,0.08+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,302.0,300.0,0.050316,0.05+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,303.0,300.0,0.049985,0.05+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,305.0,300.0,0.049326,0.05+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,310.0,250.0,0.066363,0.07+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,310.0,300.0,0.047719,0.05+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,315.0,300.0,0.046111,0.05+/-0.05 2,13000.0,6500.0,-1,-1,$\tilde\chi_2^0\tilde\chi_1^0$ (higgsino),CTEQ6.6 and MSTW2008nlo90cl,0,CTEQ6.6 and MSTW2008nlo90cl,0,0,0,1.0,1.0,0.001,50,auto,auto,total,,,0.0,Resummino,320.0,300.0,0.044674,0.04+/-0.05
- Parameters:
dict_list (list) –
filename (str) –
- hepi.write_json(dict_list, o, parameters, output, error=True, error_sym=None, scale=True, pdf=True)[source]
Saves a dict of list`s to `filename as json.
Cf. https://github.com/fuenfundachtzig/xsec
- Parameters:
output (writeable or file name str) – Should support a function .write().
dict_list (list) –
o (hepi.order.Order) –
parameters (List[str]) –
Examples
>>> import hepi >>> import urllib.request >>> dl = hepi.load(urllib.request.urlopen( ... "https://raw.githubusercontent.com/fuenfundachtzig/xsec/master/json/pp13_hinosplit_N2N1_NLO%2BNLL.json" ... ),dimensions=2) >>> with open("test.json", "w") as f: ... hepi.write_json(dl, Order.NLO_PLUS_NLL,["N1"],f,error=False) >>> with open('test.json', 'r') as f: ... print(f.read()) { "initial state": "pp", "order": "NLO+NLL", "source": "hepi-...", "contact": "...", "tool": "Resummino", "process_latex": "$\\overline{d}\\overline{d}$", "comment": "", "reference": "?", "Ecom [GeV]": "13000.0", "process_id": "pp_13000.0_-1_-1", "PDF set": "CTEQ6.6 and MSTW2008nlo90cl", "parameters": [ [ "N1" ] ], "data": { "80.0": { "xsec_pb": 2.142151 }, "60.0": { "xsec_pb": 4.504708 }, "100.0": { "xsec_pb": 1.165897 }, "125.0": { "xsec_pb": 0.614697 }, "150.0": { "xsec_pb": 0.354984 }, "175.0": { "xsec_pb": 0.327625 }, "200.0": { "xsec_pb": 0.141817 }, "225.0": { "xsec_pb": 0.138083 }, "250.0": { "xsec_pb": 0.066363 }, "300.0": { "xsec_pb": 0.044674 } } }
- class hepi.Input(order, energy, particle1, particle2, slha, pdf_lo, pdf_nlo, mu_f=1.0, mu_r=1.0, pdfset_lo=0, pdfset_nlo=0, precision=0.001, max_iters=50, invariant_mass='auto', result='total', pt='auto', id='', model='', update=True)[source]
Bases:
hepi.util.DictData
Input for computation and scans.
- Variables:
order (
Order
) – LO, NLO or NLO+NLL computation.energy (int) – CMS energy in GeV.
energyhalf (int) – Halfed energy.
particle1 (int) – PDG identifier of the first final state particle.
particle2 (int) – PDG identifier of the second final state particle.
slha (str) – File path of for the base slha. Modified slha files will be used if a scan requires a change of the input.
pdf_lo (str) – LO PDF name.
pdf_nlo (str) – NLO PDF name.
pdfset_lo (int) – LO PDF member/set id.
pdfset_nlo (int) – NLO PDF member/set id.
pdf_lo_id (int) – LO PDF first member/set id.
pdf_nlo_id (int) – NLO PDF first member/set id.
mu (double) – central scale factor.
mu_f (double) – Factorization scale factor.
mu_r (double) – Renormalization scale factor.
precision (double) – Desired numerical relative precision.
max_iters (int) – Upper limit on integration iterations.
invariant_mass (str) – Invariant mass mode ‘auto = sqrt((p1+p2)^2)’ else value.
pt (str) – Transverse Momentum mode ‘auto’ or value.
result (str) – Result type ‘total’/’pt’/’ptj’/’m’.
id (str) – Set an id of this run.
model (str) – Path for MadGraph model.
update (bool) – Update dependent mu else set to zero.
- Parameters:
order (hepi.order.Order) –
energy (float) –
particle1 (int) –
particle2 (int) –
slha (str) –
pdf_lo (str) –
pdf_nlo (str) –
- hepi.get_name(pid)[source]
Get the latex name of a particle.
- Parameters:
pid (int) – PDG Monte Carlo identifier for the particle.
- Returns:
Latex name.
- Return type:
str
Examples
>>> get_name(21) 'g' >>> get_name(1000022) '\\tilde{\\chi}_{1}^{0}'
- hepi.title(i, axe=None, scenario=None, diff_L_R=None, extra='', cms_energy=True, pdf_info=True, id=False, **kwargs)[source]
Sets the title on axis axe.
- Parameters:
i (hepi.input.Input) –
- hepi.energy_plot(dict_list, y, yscale=1.0, xaxis='E [GeV]', yaxis='$\\sigma$ [pb]', label=None, **kwargs)[source]
Plot energy on the x-axis.
- hepi.mass_plot(dict_list, y, part, logy=True, yaxis='$\\sigma$ [pb]', yscale=1.0, label=None, xaxis=None, **kwargs)[source]
- hepi.mass_vplot(dict_list, y, part, logy=True, yaxis='$\\sigma$ [pb]', yscale=1.0, label=None, mask=None, **kwargs)[source]
- hepi.get_mass(l, iid)[source]
Get the mass of particle with id iid out of the list in the “slha” element in the dict.
- Returns
list
of float : masses of particles in each element of the dict list.
- Parameters:
l (dict) –
iid (int) –
- hepi.plot(dict_list, x, y, label=None, xaxis='M [GeV]', yaxis='$\\sigma$ [pb]', ratio=False, K=False, K_plus_1=False, logy=True, yscale=1.0, mask=None, **kwargs)
Creates a plot based on the entries x`and `y in dict_list.
Examples
>>> import urllib.request >>> import hepi >>> dl = hepi.load(urllib.request.urlopen( ... "https://raw.githubusercontent.com/fuenfundachtzig/xsec/master/json/pp13_hino_NLO%2BNLL.json" ... )) >>> hepi.plot(dl,"N1","NLO_PLUS_NLL_COMBINED",xaxis="$m_{\\tilde{\\chi}_1^0}$ [GeV]")
(
Source code
,png
,hires.png
,pdf
)- Return type:
None
- hepi.vplot(x, y, label=None, xaxis='E [GeV]', yaxis='$\\sigma$ [pb]', logy=True, yscale=1.0, interpolate=True, plot_data=True, data_color=None, mask=-1, fill=False, data_fmt='.', fmt='-', print_area=False, sort=True, **kwargs)[source]
Creates a plot based on the values in x`and `y.
- hepi.mass_mapplot(dict_list, part1, part2, z, logz=True, zaxis='$\\sigma$ [pb]', zscale=1.0, label=None)[source]
- hepi.mapplot(dict_list, x, y, z, xaxis=None, yaxis=None, zaxis=None, **kwargs)[source]
Examples
>>> import urllib.request >>> import hepi
>>> dl = hepi.load(urllib.request.urlopen( ... "https://raw.githubusercontent.com/APN-Pucky/xsec/master/json/pp13_SGmodel_GGxsec_NLO%2BNLL.json" ... ),dimensions=2) >>> hepi.mapplot(dl,"gl","sq","NLO_PLUS_NLL_COMBINED",xaxis="$m_{\\tilde{g}}$ [GeV]",yaxis="$m_{\\tilde{q}}$ [GeV]" , zaxis="$\\sigma_{\\mathrm{NLO+NLL}}$ [pb]")
(
Source code
,png
,hires.png
,pdf
)
- hepi.scatterplot(dict_list, x, y, z, xaxis=None, yaxis=None, zaxis=None, **kwargs)[source]
Scatter map 2d. Central color is the central value, while the inner and outer ring are lower and upper bounds of the uncertainty interval.
Examples
>>> import urllib.request >>> import hepi >>> dl = hepi.load(urllib.request.urlopen( ... "https://raw.githubusercontent.com/APN-Pucky/xsec/master/json/pp13_hinosplit_N2N1_NLO%2BNLL.json" ... ),dimensions=2) >>> hepi.scatterplot(dl,"N1","N2","NLO_PLUS_NLL_COMBINED",xaxis="$m_{\\tilde{\\chi}_1^0}$ [GeV]",yaxis="$m_{\\tilde{\\chi}_2^0}$ [GeV]" , zaxis="$\\sigma_{\\mathrm{NLO+NLL}}$ [pb]")
(
Source code
,png
,hires.png
,pdf
)
- hepi.scale_plot(dict_list, vl, seven_point_band=False, cont=False, error=True, li=None, plehn_color=False, yscale=1.0, unit='pb', yaxis=None, **kwargs)[source]
Creates a scale variance plot with 5 panels (xline).
- hepi.central_scale_plot(dict_list, vl, cont=False, error=True, yscale=1.0, unit='pb', yaxis=None)[source]
Creates a scale variance plot with 3 panels (ystacked).
- hepi.init_double_plot(figsize=(6, 8), sharex=True, sharey=False, gridspec_kw={'height_ratios': [3, 1]})[source]
Initialze subplot for Ratio/K plots with another figure below.
- class hepi.Result(lo=None, nlo=None, nlo_plus_nll=None, annlo_plus_nnll=None)[source]
Bases:
hepi.util.DictData
General result class. All uncertainties are of numerical origin.
- Variables:
LO (
double
) – Leading Order result. Defaults to None.NLO (
double
) – Next-to-Leading Order result. Defaults to None.NLO_PLUS_NLL (
double
) – Next-to-Leading Order plus Next-to-Leading Logarithm result. Defaults to None.K_LO (
double
) – LO divided by LO.K_NLO (
double
) – NLO divided by LO result.K_NLO_PLUS_NLL (
double
) – NLO+NLL divided by LO.K_aNNLO_PLUS_NNLL (
double
) – aNNLO+NNLL divided by LO.NLO_PLUS_NLL_OVER_NLO (
double
) – NLO+NLL divided by NLO.aNNLO_PLUS_NNLL_OVER_NLO (
double
) – aNNLO+NNLL divided by NLO.
Sets given and computes dependent
Attributes
.- Parameters:
lo (
double
) – corresponds toLO
.nlo (
double
) – corresponds toNLO
.nlo_plus_nll (
double
) – corresponds toNLO_PLUS_NLL
.annlo_plus_nnll (
double
) – corresponds toaNNLO_PLUS_NNLL
.
- hepi.pdf_errors(li, dl, ordernames=None, confidence_level=90, n_jobs=None)[source]
Just like pdf_error but over a list of ordernames.
- hepi.pdf_error(li, dl, ordername='LO', confidence_level=90, n_jobs=None)[source]
Computes Parton Density Function (PDF) uncertainties through
lhapdf.set.uncertainty()
.- Parameters:
- Returns:
- Modified dl with new ordername_{PDF,PDF_CENTRAL,PDF_ERRPLUS,PDF_ERRMINUS,PDF_ERRSYM} entries.
(ordername)_`PDF` contains a symmetrized
uncertainties
object.
- Return type:
dict
- hepi.scale_errors(li, dl, ordernames=None, n_jobs=None)[source]
Just like scale_error but over a list of ordernames.
- hepi.scale_error(li, dl, ordername='LO', n_jobs=None)[source]
Computes seven-point scale uncertainties from the results where the renormalization and factorization scales are varied by factors of 2 and relative factors of four are excluded (cf.
seven_point_scan()
).
- hepi.combine_errors(dl, ordernames=None)[source]
Just like combine_error but over a list of ordernames.
- hepi.combine_error(dl, ordername='LO')[source]
Combines seven-point scale uncertainties and pdf uncertainties from the results by Pythagorean addition.
Note
Running
scale_errors()
andpdf_errors()
before is necessary.- Parameters:
dl (
dict
) –Result
dictionary with lists per entry.- Returns:
- Modified dl with new ordername_{COMBINED,ERRPLUS,ERRMINUS} entries.
ordername_COMBINED contains a symmetrized
uncertainties
object.
- Return type:
dict
- class hepi.Input(order, energy, particle1, particle2, slha, pdf_lo, pdf_nlo, mu_f=1.0, mu_r=1.0, pdfset_lo=0, pdfset_nlo=0, precision=0.001, max_iters=50, invariant_mass='auto', result='total', pt='auto', id='', model='', update=True)[source]
Bases:
hepi.util.DictData
Input for computation and scans.
- Variables:
order (
Order
) – LO, NLO or NLO+NLL computation.energy (int) – CMS energy in GeV.
energyhalf (int) – Halfed energy.
particle1 (int) – PDG identifier of the first final state particle.
particle2 (int) – PDG identifier of the second final state particle.
slha (str) – File path of for the base slha. Modified slha files will be used if a scan requires a change of the input.
pdf_lo (str) – LO PDF name.
pdf_nlo (str) – NLO PDF name.
pdfset_lo (int) – LO PDF member/set id.
pdfset_nlo (int) – NLO PDF member/set id.
pdf_lo_id (int) – LO PDF first member/set id.
pdf_nlo_id (int) – NLO PDF first member/set id.
mu (double) – central scale factor.
mu_f (double) – Factorization scale factor.
mu_r (double) – Renormalization scale factor.
precision (double) – Desired numerical relative precision.
max_iters (int) – Upper limit on integration iterations.
invariant_mass (str) – Invariant mass mode ‘auto = sqrt((p1+p2)^2)’ else value.
pt (str) – Transverse Momentum mode ‘auto’ or value.
result (str) – Result type ‘total’/’pt’/’ptj’/’m’.
id (str) – Set an id of this run.
model (str) – Path for MadGraph model.
update (bool) – Update dependent mu else set to zero.
- Parameters:
order (hepi.order.Order) –
energy (float) –
particle1 (int) –
particle2 (int) –
slha (str) –
pdf_lo (str) –
pdf_nlo (str) –
- class hepi.Order[source]
Bases:
enum.IntEnum
Computation orders.
Initialize self. See help(type(self)) for accurate signature.
- LO = 0
Leading Order
- NLO = 1
Next-to-Leading Order
- NLO_PLUS_NLL = 2
Next-to-Leading Order plus Next-to-Leading Logarithms
- aNNLO_PLUS_NNLL = 3
Approximate Next-to-next-to-Leading Order plus Next-to-next-to-Leading Logarithms
- class hepi.Result(lo=None, nlo=None, nlo_plus_nll=None, annlo_plus_nnll=None)[source]
Bases:
hepi.util.DictData
General result class. All uncertainties are of numerical origin.
- Variables:
LO (
double
) – Leading Order result. Defaults to None.NLO (
double
) – Next-to-Leading Order result. Defaults to None.NLO_PLUS_NLL (
double
) – Next-to-Leading Order plus Next-to-Leading Logarithm result. Defaults to None.K_LO (
double
) – LO divided by LO.K_NLO (
double
) – NLO divided by LO result.K_NLO_PLUS_NLL (
double
) – NLO+NLL divided by LO.K_aNNLO_PLUS_NNLL (
double
) – aNNLO+NNLL divided by LO.NLO_PLUS_NLL_OVER_NLO (
double
) – NLO+NLL divided by NLO.aNNLO_PLUS_NNLL_OVER_NLO (
double
) – aNNLO+NNLL divided by NLO.
Sets given and computes dependent
Attributes
.- Parameters:
lo (
double
) – corresponds toLO
.nlo (
double
) – corresponds toNLO
.nlo_plus_nll (
double
) – corresponds toNLO_PLUS_NLL
.annlo_plus_nnll (
double
) – corresponds toaNNLO_PLUS_NNLL
.
- hepi.DL2DF(ld)[source]
Convert a dict of list`s to a `pandas.DataFrame.
- Parameters:
ld (dict) –
- Return type:
pandas.DataFrame
- hepi.LD2DL(l, actual_dict=False)[source]
Convert a list of objects into a dictionary of lists.
The values of each object are first converted to a dict through the __dict__ attribute.
- Parameters:
l (List) – list of objects.
actual_dict (bool) – objects are already dicts
- Returns:
dictionary of numpy arrays.
- Return type:
dict
Examples
>>> class Param: ... def __init__(self,a,b,c): ... self.a = a ... self.b = b ... self.c = c >>> LD2DL([ Param(1,2,3), Param(4,5,6) , Param(7,8,9) ]) {'a': array([1, 4, 7]), 'b': array([2, 5, 8]), 'c': array([3, 6, 9])}
- hepi.namehash(n)[source]
Creates a sha256 hash from the objects string representation.
- Parameters:
n (any) – object.
- Returns:
sha256 of object.
- Return type:
str
Examples
>>> p = {'a':1,'b':2} >>> str(p) "{'a': 1, 'b': 2}" >>> namehash(str(p)) '3dffaea891e5dbadb390da33bad65f509dd667779330e2720df8165a253462b8' >>> namehash(p) '3dffaea891e5dbadb390da33bad65f509dd667779330e2720df8165a253462b8'
- class hepi.RunParam(skip=False, in_file=None, out_file=None, execute=None, name=None)[source]
Bases:
hepi.util.DictData
Abstract class that is similar to a dictionary but with fixed keys.
- Parameters:
skip (bool) –
in_file (str) –
out_file (str) –
execute (str) –
name (str) –
- class hepi.Runner(path, in_dir=None, out_dir=None, pre=None)[source]
- Parameters:
path (str) –
in_dir (str) –
out_dir (str) –
- _prepare(p, skip=False, assume_valid=False, **kwargs)[source]
- Parameters:
p (hepi.input.Input) –
- Return type:
- _check_input(param, **kwargs)[source]
- Parameters:
param (hepi.input.Input) –
- Return type:
bool
- _prepare_all(params, skip=True, n_jobs=None, **kwargs)[source]
Prepares all parameters for execution.
- Parameters:
params (List[
hepi.Input
]) – List of input parameters.skip (bool, optional) – If True, the runner will check if the output file already exists and skip the execution if it does. Defaults to True.
n_jobs (int) – Number of parallel jobs. If None, use all available cores.
- Return type:
List[RunParam]
- run(params, skip=True, parse=True, parallel=True, sleep=0, run=True, ignore_error=False, n_jobs=None, **kwargs)[source]
Run the passed list of parameters.
- Parameters:
params (
list
ofhepi.Input
) – All parameters that should be executed/queued.skip (bool) – True means stored runs will be skipped. Else the are overwritten.
parse (bool) – Parse the results. This is not the prefered cluster/parallel mode, as there the function only queues the job.
parallel (bool) – Run jobs in parallel.
sleep (int) – Sleep seconds after starting job.
run (bool) – Actually start/queue runner.
ignore_error (bool) – Continue instead of raising Exceptions. Also ignores hash collisions.
n_jobs (int) – Number of parallel jobs. If None, use all available cores.
- Returns:
combined dataframe of results and parameters. The dataframe is empty if parse is set to False.
- Return type:
pd.DataFrame
- _run(rps, wait=True, parallel=True, sleep=0, n_jobs=None, **kwargs)[source]
Runs Runner per
RunParams
.- Parameters:
rps (
list
ofRunParams
) – Extended run parameters.bar (bool) – Enable info bar.
wait (bool) – Wait for parallel runs to finish.
sleep (int) – Sleep seconds after starting subprocess.
parallel (bool) – Run jobs in parallel.
n_jobs (int) – Number of parallel jobs. If None, use all available cores.
- Returns:
return codes from jobs if no_parse is False.
- Return type:
list
of int
- _is_valid(file, p, d, **kwargs)[source]
Verifies that a file is a complete output.
- Parameters:
file (str) – File path to be parsed.
p (
hepi.Input
) – Onput parameters.d (
dict
) – Param dictionary.
- Returns:
True if file could be parsed.
- Return type:
bool
- parse(outputs, n_jobs=None)[source]
Parses Resummino output files and returns List of Results.
- Args:
outputs (
list
of str): List of the filenames to be parsed.
n_jobs (int): Number of parallel jobs. If None, use all available cores.
- Returns:
list
ofhepi.resummino.result.ResumminoResult
- Parameters:
outputs (List[str]) –
- Return type:
List[hepi.results.Result]
- _parse_file(file)[source]
Extracts results from an output file.
- Parameters:
file (str) – File path to be parsed.
- Returns:
If a value is not found in the file None is used.
- Return type:
- set_path(p)[source]
Set the path to the Runner folder containing the binary in ‘./bin’ or ‘./build/bin’.
- Parameters:
p (str) – new path.
- set_input_dir(indir)[source]
Sets the input directory.
- Parameters:
indir (str) – new input directory.
- hepi.LD2DL(l, actual_dict=False)[source]
Convert a list of objects into a dictionary of lists.
The values of each object are first converted to a dict through the __dict__ attribute.
- Parameters:
l (List) – list of objects.
actual_dict (bool) – objects are already dicts
- Returns:
dictionary of numpy arrays.
- Return type:
dict
Examples
>>> class Param: ... def __init__(self,a,b,c): ... self.a = a ... self.b = b ... self.c = c >>> LD2DL([ Param(1,2,3), Param(4,5,6) , Param(7,8,9) ]) {'a': array([1, 4, 7]), 'b': array([2, 5, 8]), 'c': array([3, 6, 9])}
- hepi.DL2DF(ld)[source]
Convert a dict of list`s to a `pandas.DataFrame.
- Parameters:
ld (dict) –
- Return type:
pandas.DataFrame
- hepi.namehash(n)[source]
Creates a sha256 hash from the objects string representation.
- Parameters:
n (any) – object.
- Returns:
sha256 of object.
- Return type:
str
Examples
>>> p = {'a':1,'b':2} >>> str(p) "{'a': 1, 'b': 2}" >>> namehash(str(p)) '3dffaea891e5dbadb390da33bad65f509dd667779330e2720df8165a253462b8' >>> namehash(p) '3dffaea891e5dbadb390da33bad65f509dd667779330e2720df8165a253462b8'