{ "cells": [ { "cell_type": "markdown", "id": "fcca5058", "metadata": {}, "source": [ "# MadGraph example" ] }, { "cell_type": "code", "execution_count": 3, "id": "b583970e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.1.8.9+dirty\n", "/opt/MG5_aMC_v2_7_3/\n" ] } ], "source": [ "import hepi\n", "print(hepi.__version__)\n", "import smpl\n", "import numpy as np\n", "import hepi.madgraph as mg\n", "import hepi.util as util\n", "import matplotlib.pyplot as plt\n", "mg.set_path(\"/opt/MG5_aMC_v2_7_3/\")\n", "print (mg.get_path())" ] }, { "cell_type": "markdown", "id": "2dd526dd", "metadata": {}, "source": [ "## No on-shell subtraction through madstr" ] }, { "cell_type": "code", "execution_count": 8, "id": "ed7216a4", "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running: 15 jobs\n", "./output/09f0fa80d6ffa4d16b6c3b7f888df66d3c6debf643b46bfa1441c5a941d5bc4a.out\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/opt/MG5_aMC_v2_7_3/HEPTools/HEPToolsInstallers/HEPToolInstaller.py:510: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n", " _mg5_version = LooseVersion(line[9:].strip())\n", "/opt/MG5_aMC_v2_7_3/HEPTools/HEPToolsInstallers/HEPToolInstaller.py:456: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n", " if tool_name in ['lhapdf6', 'lhapdf'] and MG5_version and MG5_version < LooseVersion(\"2.6.1\"):\n", "/opt/MG5_aMC_v2_7_3/HEPTools/HEPToolsInstallers/HEPToolInstaller.py:255: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n", " ( lambda MG5version: MG5version < LooseVersion(\"2.6.1\"),\n", "Detected 'ninja' missing dependency: 'oneloop'. Will install it now.\n", "Fetching data with command:\n", " wget --no-check-certificate http://helac-phegas.web.cern.ch/helac-phegas/tar-files/OneLOop-3.6.tgz\n", "--2022-06-08 11:43:47-- http://helac-phegas.web.cern.ch/helac-phegas/tar-files/OneLOop-3.6.tgz\n", "Resolving helac-phegas.web.cern.ch... 188.184.100.128\n", "Connecting to helac-phegas.web.cern.ch|188.184.100.128|:80... connected.\n", "HTTP request sent, awaiting response... 301 Moved Permanently\n", "Location: https://helac-phegas.web.cern.ch/tar-files/OneLOop-3.6.tgz [following]\n", "--2022-06-08 11:43:48-- https://helac-phegas.web.cern.ch/tar-files/OneLOop-3.6.tgz\n", "Connecting to helac-phegas.web.cern.ch|188.184.100.128|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 111734 (109K) [application/x-compressed]\n", "Saving to: ‘OneLOop-3.6.tgz’\n", "\n", " 0K .......... .......... .......... .......... .......... 45% 1.40M 0s\n", " 50K .......... .......... .......... .......... .......... 91% 2.99M 0s\n", " 100K ......... 100% 156M=0.05s\n", "\n", "2022-06-08 11:43:48 (2.08 MB/s) - ‘OneLOop-3.6.tgz’ saved [111734/111734]\n", "\n", "Installing tool 'oneloop'...\n", " > Follow the installation progress by running the command below in a separate terminal)\n", " > tail -f /opt/MG5_aMC_v2_7_3/HEPTools/oneloop/oneloop_install.log\n", " > Successful installation of dependency 'oneloop' in '/opt/MG5_aMC_v2_7_3/HEPTools'.\n", " > See installation log at '/opt/MG5_aMC_v2_7_3/HEPTools/oneloop/oneloop_install.log'.\n", "Fetching data with command:\n", " wget --no-check-certificate https://ninja.hepforge.org/downloads//ninja-1.1.0.tar.gz\n", "--2022-06-08 11:44:27-- https://ninja.hepforge.org/downloads//ninja-1.1.0.tar.gz\n", "Resolving ninja.hepforge.org... 129.234.186.186\n", "Connecting to ninja.hepforge.org|129.234.186.186|:443... connected.\n", "HTTP request sent, awaiting response... 302 Found\n", "Location: /downloads?f=/ninja-1.1.0.tar.gz [following]\n", "--2022-06-08 11:44:27-- https://ninja.hepforge.org/downloads?f=/ninja-1.1.0.tar.gz\n", "Reusing existing connection to ninja.hepforge.org:443.\n", "HTTP request sent, awaiting response... 302 Found\n", "Location: /downloads?f=ninja-1.1.0.tar.gz [following]\n", "--2022-06-08 11:44:27-- https://ninja.hepforge.org/downloads?f=ninja-1.1.0.tar.gz\n", "Reusing existing connection to ninja.hepforge.org:443.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: unspecified [application/x-gzip]\n", "Saving to: ‘ninja-1.1.0.tar.gz’\n", "\n", " 0K .......... .......... .......... .......... .......... 771K\n", " 50K .......... .......... .......... .......... .......... 1.53M\n", " 100K .......... .......... .......... .......... .......... 224M\n", " 150K .......... .......... .......... .......... .......... 1.63M\n", " 200K .......... .......... .......... .......... .......... 17.9M\n", " 250K .......... .......... .......... .......... .......... 181M\n", " 300K .......... .......... .......... .......... .......... 206M\n", " 350K .......... .......... .......... .......... .......... 1.63M\n", " 400K .......... .......... .......... .......... .......... 36.0M\n", " 450K .......... .......... .......... .......... .......... 180M\n", " 500K .......... .......... .......... .......... .......... 163M\n", " 550K .......... ....... 219M=0.2s\n", "\n", "2022-06-08 11:44:27 (3.42 MB/s) - ‘ninja-1.1.0.tar.gz’ saved [581566]\n", "\n", "Installing tool 'ninja'...\n", " > Follow the installation progress by running the command below in a separate terminal)\n", " > tail -f /opt/MG5_aMC_v2_7_3/HEPTools/ninja/ninja_install.log\n", "Successful installation of 'ninja' in '/opt/MG5_aMC_v2_7_3/HEPTools'.\n", "/opt/MG5_aMC_v2_7_3/HEPTools/HEPToolsInstallers/HEPToolInstaller.py:510: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n", " _mg5_version = LooseVersion(line[9:].strip())\n", "/opt/MG5_aMC_v2_7_3/HEPTools/HEPToolsInstallers/HEPToolInstaller.py:456: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n", " if tool_name in ['lhapdf6', 'lhapdf'] and MG5_version and MG5_version < LooseVersion(\"2.6.1\"):\n", "/opt/MG5_aMC_v2_7_3/HEPTools/HEPToolsInstallers/HEPToolInstaller.py:255: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n", " ( lambda MG5version: MG5version < LooseVersion(\"2.6.1\"),\n", "Fetching data with command:\n", " wget --no-check-certificate http://collier.hepforge.org//collier-latest.tar.gz\n", "--2022-06-08 11:49:29-- http://collier.hepforge.org//collier-latest.tar.gz\n", "Resolving collier.hepforge.org... 129.234.186.186\n", "Connecting to collier.hepforge.org|129.234.186.186|:80... connected.\n", "HTTP request sent, awaiting response... 302 Found\n", "Location: https://collier.hepforge.org/collier-latest.tar.gz [following]\n", "--2022-06-08 11:49:29-- https://collier.hepforge.org/collier-latest.tar.gz\n", "Connecting to collier.hepforge.org|129.234.186.186|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 933676 (912K) [application/x-gzip]\n", "Saving to: ‘collier-latest.tar.gz’\n", "\n", " 0K .......... .......... .......... .......... .......... 5% 808K 1s\n", " 50K .......... .......... .......... .......... .......... 10% 1.54M 1s\n", " 100K .......... .......... .......... .......... .......... 16% 55.5M 0s\n", " 150K .......... .......... .......... .......... .......... 21% 1.51M 0s\n", " 200K .......... .......... .......... .......... .......... 27% 146M 0s\n", " 250K .......... .......... .......... .......... .......... 32% 136M 0s\n", " 300K .......... .......... .......... .......... .......... 38% 137M 0s\n", " 350K .......... .......... .......... .......... .......... 43% 1.61M 0s\n", " 400K .......... .......... .......... .......... .......... 49% 24.1M 0s\n", " 450K .......... .......... .......... .......... .......... 54% 207M 0s\n", " 500K .......... .......... .......... .......... .......... 60% 229M 0s\n", " 550K .......... .......... .......... .......... .......... 65% 175M 0s\n", " 600K .......... .......... .......... .......... .......... 71% 8.41M 0s\n", " 650K .......... .......... .......... .......... .......... 76% 15.2M 0s\n", " 700K .......... .......... .......... .......... .......... 82% 212M 0s\n", " 750K .......... .......... .......... .......... .......... 87% 2.76M 0s\n", " 800K .......... .......... .......... .......... .......... 93% 98.5M 0s\n", " 850K .......... .......... .......... .......... .......... 98% 19.4M 0s\n", " 900K .......... . 100% 313M=0.2s\n", "\n", "2022-06-08 11:49:29 (4.66 MB/s) - ‘collier-latest.tar.gz’ saved [933676/933676]\n", "\n", "Installing tool 'collier'...\n", " > Follow the installation progress by running the command below in a separate terminal)\n", " > tail -f /opt/MG5_aMC_v2_7_3/HEPTools/collier/collier_install.log\n", "Successful installation of 'collier' in '/opt/MG5_aMC_v2_7_3/HEPTools'.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "No module named 'madgraph'\n", " No hepmc reader since No module named 'madgraph' \u001b[1;30m[lhe_parser.py at line 50]\u001b[0m\n", "INFO: ************************************************************\n", "* *\n", "* W E L C O M E to M A D G R A P H 5 *\n", "* a M C @ N L O *\n", "* *\n", "* * * *\n", "* * * * * *\n", "* * * * * 5 * * * * *\n", "* * * * * *\n", "* * * *\n", "* *\n", "* VERSION 5.2.7.3.py3 20xx-xx-xx *\n", "* *\n", "* The MadGraph5_aMC@NLO Development Team - Find us at *\n", "* http://amcatnlo.cern.ch *\n", "* *\n", "* Type 'help' for in-line help. *\n", "* *\n", "************************************************************ \n", "INFO: load configuration from /home/apn/data/de.neuwirthinformatik.Alexander/Development/git/hepi/docs/source/examples/output/09f0fa80d6ffa4d16b6c3b7f888df66d3c6debf643b46bfa1441c5a941d5bc4a.bdir/Cards/amcatnlo_configuration.txt \n", "INFO: load configuration from /opt/MG5_aMC_v2_7_3/input/mg5_configuration.txt \n", "INFO: load configuration from /home/apn/data/de.neuwirthinformatik.Alexander/Development/git/hepi/docs/source/examples/output/09f0fa80d6ffa4d16b6c3b7f888df66d3c6debf643b46bfa1441c5a941d5bc4a.bdir/Cards/amcatnlo_configuration.txt \n", "Using default eps viewer \"evince\". Set another one in ./input/mg5_configuration.txt\n", "Using default web browser \"firefox\". Set another one in ./input/mg5_configuration.txt\n", "calculate_xsect -f\n", "INFO: will run in mode: NLO \n", "INFO: Starting run \n", "INFO: Compiling the code \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO: Using LHAPDF v6.3.0 interface for PDFs \n", "INFO: Compiling source... \n", "INFO: ...done, continuing with P* directories \n", "\u001b[1;34mWARNING: Could not compile StdHEP because its source directory could not be found in the SOURCE folder.\n", " Check the MG5_aMC option 'output_dependencies'.\n", " This will prevent the use of HERWIG6/Pythia6 shower. \u001b[0m\n", "INFO: Compiling directories... \n", "INFO: Compiling on 8 cores \n", "INFO: Compiling P0_uux_elmelp... \n", "INFO: Compiling P0_ddx_elmelp... \n", "INFO: Compiling P0_uxu_elmelp... \n", "INFO: Compiling P0_dxd_elmelp... \n", "INFO: P0_ddx_elmelp done. \n", "INFO: P0_uxu_elmelp done. \n", "INFO: P0_uux_elmelp done. \n", "INFO: P0_dxd_elmelp done. \n", "INFO: Checking test output: \n", "INFO: P0_uux_elmelp \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_ddx_elmelp \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_uxu_elmelp \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_dxd_elmelp \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: Starting run \n", "INFO: Using 8 cores \n", "INFO: Cleaning previous results \n", "INFO: Doing fixed order NLO \n", "INFO: Setting up grids \n", "INFO: Idle: 0, Running: 4, Completed: 0 [ current time: 11h58 ] \n", "INFO: Idle: 0, Running: 3, Completed: 1 [ 0.33s ] \n", "INFO: Idle: 0, Running: 2, Completed: 2 [ 0.36s ] \n", "INFO: Idle: 0, Running: 1, Completed: 3 [ 0.48s ] \n", "INFO: Idle: 0, Running: 0, Completed: 4 [ 0.69s ] \n", "INFO: \n", " Results after grid setup:\n", " Total cross section: 2.489e-01 +- 1.5e-03 pb\n", " \n", "INFO: Refining results, step 1 \n", "INFO: Idle: 0, Running: 5, Completed: 0 [ current time: 11h58 ] \n", "INFO: Idle: 0, Running: 4, Completed: 1 [ 0.25s ] \n", "INFO: Idle: 0, Running: 3, Completed: 2 [ 0.33s ] \n", "INFO: Idle: 0, Running: 2, Completed: 3 [ 1.1s ] \n", "INFO: Idle: 0, Running: 1, Completed: 4 [ 1.2s ] \n", "INFO: Idle: 0, Running: 0, Completed: 5 [ 1.2s ] \n", "INFO: \n", " --------------------------------------------------------------\n", " Final results and run summary:\n", " Process p p > 1000011 -1000011 [QCD]\n", " Run at p-p collider (6500.0 + 6500.0 GeV)\n", " Total cross section: 2.468e-01 +- 9.1e-04 pb\n", " --------------------------------------------------------------\n", " \n", "INFO: The results of this run and the HwU and GnuPlot files with the plots have been saved in /home/apn/data/de.neuwirthinformatik.Alexander/Development/git/hepi/docs/source/examples/output/09f0fa80d6ffa4d16b6c3b7f888df66d3c6debf643b46bfa1441c5a941d5bc4a.bdir/Events/run_01 \n", "INFO: Run complete \n", "INFO: \n", "quit\n", "INFO: \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "stty: stty: 'standard input''standard input': Inappropriate ioctl for device\n", ": Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for devicestty: \n", "'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: stty: 'standard input''standard input': Inappropriate ioctl for device\n", ": Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for devicestty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "\n", "stty: stty: stty: stty: 'standard input''standard input': Inappropriate ioctl for device\n", ": Inappropriate ioctl for device\n", "'standard input': Inappropriate ioctl for device\n", "stty: stty: stty: 'standard input': Inappropriate ioctl for device\n", "'standard input': Inappropriate ioctl for device\n", "'standard input': Inappropriate ioctl for device\n", "'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEvCAYAAAAQB1WgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABHiElEQVR4nO3dd3gUVffA8e/ZJCTUEEACJBB6byGhgwKKdBBEitgQBBTErmDl974oqFiwvCoCIkpXRKqgYAQ0tIRIb1IkFAWkhR5yf3/MgktI2cBmd7M5n+fZJ5m6Z25mc3bu3LlXjDEopZRS3sbm6QCUUkqptGiCUkop5ZU0QSmllPJKmqCUUkp5JU1QSimlvJImKKWUUl5JE5RSSimvpAlKZSsRaS4iJqsvT8etlPI8f08HoHxeBWOMeDoIpVTOo1dQSimlvJImqFxCRCZ54D3LAnvc/b5KKd+gCcrLiMhwEdkjIm1FZHl2b5fNmgC/ejoIXyMiVUQkQUROi8hQT8eT04jIJBEZmc3vsVlEWmSwfK+I3JGdMfgCTVDeJxJoBbwIxLhhO6fdwIcqwBiTnMZ++ohInIicEJHjIhIjImEuinGIiKwTkQuprxpF5GsROSQip0Rkh4j0z2RfRUTkOxE5IyL7ROTedNZLcniliMg5h+k+mbzHDyLynzTmdxGRwyKS1n3i54GfjTEFjTEfZLR/b5Kb/ikbY2oYY2Ige487O/YtIr1EZKv9vP9DRJpnZbkraSMJL2OM6WH/9VYAESkBTE9j1V7GmMPpbWfftgww2T5ZVURi7L/faYy56Mq47e/XHFhnjDknIoHAhTTWeQh4GegJxANFgbuA4y4K4yAwEmgD5E21bBTQzxhzQUSqAjEist4YE5fOvj4GLgKhQF1ggYj8bozZ7LiSMabAld9FZC/Q3xjzk5Pxfgm8LiKvmWuHFrgfmJJWggciSPucyJCI+KezP6+Xk2PPSUSkNfAm1udzDVAyK8tdzhijr0xeQB8gFpgBHAL2A+0yW5bJPiWNeY8AW4CTwCKgeBZizHBbYJIT+xgG/AGctu+rq8Oyr4AU4ByQBDyfatsCwGdAe/t0a6BUGu+xAnjODX+zkRkdM1DF/vfqkc7y/FjJqXKqMhidyfvuBe5IY34p4FvgCNZ9uaH2+Xntf7NbHdYNAc4DddLYzzLgsn15ElAZqIZ11XwC2Ax0ThXPC8AGrC8M/unE/Jx9nTPABKykvMh+LvwEhDh5nrwAHLAv2w7cnt75k16ZZBQ7UBqYbd/mGPCRfd2MyiAS68vQaazP6XRgZGZ/mzTKqS8wz2F6JzDLYXo/UNfxPEjruB2WP2s/tpP2uIIyOK+uO+4M9p3u8ThRFr9hfYlLL44Ml7v8c+yuN8rJL2C0/STohlUt+iywL7NlGeyvOfADkNdh3otAHFARyAOMB8Y5GV+m2+JcgrrHfnLbsL4hnQFKOizfSxr/fB2Wl3b4h/FgOussAbYCPYBimcQzH+sfTlqv+Zlsm2aCAv4HnAWM/YNaIJ3tI4GzqeY9i8M/qHS2u66M7OUZB7xq//uUB3YDbezLPwfGO6w/EEjI4D1isK7SAAKAXfZzIA9WNe9poIpDPAn2v03eDGJehZWUwoC/7WUTCQRhJcXXMjtPsJL+fuxfTICyWI8ZXFc2mZVJWrEDfsDvwHtYXyCCgGYZlYF9eh/wlH297sAl7P+UnYnDIZ7yWOeezX78+4BEh2XHAVsax5rWObEX6wqkFFAE6zMxKJ2/T5rHnda+MzoeJ8rCD+tL2TB7eSZiJcK8zizPjle27NTXXsAC4A2H6eJY/+CCMlqWwf5sWFU7S+wfvOJYH3LHb+uNgfVOxHbD2zqx7wSgi8P0dR+0NLb53v7zoXSWlwDeB/7EuhKYRxauFLMQe7pXUPYPWjOsqsaAdNZpDhxONe8RICaT903rn1FD4M9U84YDX9h/b4b1jy/IPv0r8FQG7xHDvwmqOXAY+z9G+7xpwAiHeB52IuY+DtPfAp84TD8OzMnsPMH6gvQ31pXDdeXKtf+0MyyTtGK3n9dHSHUVmFEZYFV5H8ShxgLrKmCks3GkWrYfqAf0AsZhJZmqWFdXc9M51rTOib3AfQ7TbwGfpvOeaR53WvvO6HicKItSWP+71mF94ShmPxdfd2Z5dry0kYRzagHfOEwXB5KMMeczWmZvUZdWLwmXgQewqsEGAbcDgcAae8OBE1hXWCediO1mtr2GiDxgbx12ZT81sU7CrNgiIh2xqj+uY4w5bIx50hhTBmgA1MaqxnEbY8xlY8xKIBx4NJ3VkoBCqeYVwvpmnlURQKkr5Wov2xexrliwx3IUuEtEKmCVy1Qn910K2G+MSXGYtw/rSuiK/U7s5y+H38+lMe14ny3N88QYswt4Eisx/C0i00WkVDrvl2GZpBN7aazaidT3ojIqg1LAAWP/D+uwLKtxXPEL0ALrn/0vWF8WbrO/fklnm/Qcdvj9LA5lnEp6x52WjI4ns7I4Z//5oTHmkDHmKPAu0N7J5S6nCSoTIlIY6wQ54jC7O7Aoo2UAxpgfjDGS+oX1DX4y8CPwKdYl/nfGmMIOr2BjTAt7DLNFpHI6Id7Mto7HGYFV1TQEKGqMKQxsAhx7gTBpbJraQuAVrCqjDBmrccJGrGqLtGJalKqFnONrkROxZMYfqJDOsh2Av4hUcphXB+v+RlbtB/ak+hsVNMY4frAnY31puQ9YbIz5K809Xe8gUFpEHD/LZbDuA13hzN/NKZmdJ8aYqcaYZlj/KA3WDfW04nCmTNLapkwaLRszKoNDQJiISKplWY3jiisJqrn991/IPEHdbPmnd9xp7Tuj48mwLIwxx7Gq7Rz3aZxdnh00QWWuFtYVz70i4i8iHYDHsL4lZrQsI02xvtF0Mcacw6rvbyki9QBEpJC9mfGVE6kC1k3ptNzMto7yY51sR+z76Yv1zdjRX1h12hn5DYg3xlxOvUBEholIUxEJtL8ewvqwf5HWjowx7YwxBdJ5tUtrG/vfIQjrS4CfiATZ5xW3N48tICJ+ItIG6A0sTee9z2DdlP6PiOQXkaZY1VhfZXL8aVkDnBaRF0Qkr/39a4pIfYd1JmNVjT2CVf3rrNVY376fF5EAsZ696cQNtPJzUrrniVjPZ7Wyt+A8j/WN2/GqxvH8caZMUluD9U92tP1vEmT/u2RUBrFAMjDUvqwb1hWq4z6zEscvQEus+y6JWI1+2mK1Rl2fzjbOfG4ykt5xp7XvjI4ns7IA67P4uP3zEoJ1v2p+Fpa7VnbVHfrKCyvhfAnMwareWQc0yWyZE/uVVNNDsVrcJGF9S/nEPj8IiMtkXze8bar9vA78g1Xd9C7Wh7G/w/IuWPeOTgDPZrCf6+rK7fPfwLoyScL6YC0CGrr47zUC6x+o42sEcIv9eE4Ap7Cu3B5Jte0i4EWH6SL2v+0Z+3Hf68T77yX9VnzTsKp1jmNdYaa+LxFjXxaYyXvEpPq71LAf20mub1WXZjwZxQx8jf0eln26P/BTZucJVnXtGvtn4R+sf1ylHLa75vzJrEzSih3rG/8crJZsR4EPnCiDaKzkcaXl2gyub8WX4d8mVQyHuPZe2TpgUXplmvq40ynzEcDXGbxnesed1r7TPR4nyiIAqyHRCfv2H+BwPz2z5a5+if1NVTpE5BNghzHmvawsc+H718Vqlp3hA5+u3lYp5fvEepg90RjzsqdjSYtW8WWuFlYT0Kwuc5WaWN8I3b2tUkp5lCaozNUEtt3AMlepwY3dmL/ZbZVSyqO0is/LichcrGeHTtln3WOs1jTZuq1SSnmaJiillFJeSav4lFJKeSVNUEoppbxSrhhuo1ixYqZs2bKeDsOlzpw5Q/78aXbAoOy0jDKm5ZM5LaPMuaKM4uLijhpjbkk936cTlIh0AjpVrFiRdevWeTocl4qJiaFFixaeDsOraRllTMsnc1pGmXNFGYnIvrTm+3QVnzFmnjFmQHBwsKdDUUoplUU+naCUUkrlXJqglFJKeSWfvgellFI5yaVLl0hMTOT8+fOeDsVpwcHBbN3qXI9vQUFBhIeHExAQ4NT6mqCUUspLJCYmUrBgQcqWLcu1wzZ5r9OnT1OwYMFM1zPGcOzYMRITEylXrpxT+/bpKj4R6SQi406ezPLgskop5Xbnz5+naNGiOSY5ZYWIULRo0SxdHfp0gtJWfEqpnMYXk9MVWT02reLLzP41sDsGyreA0qkHn1RKKfd678cdjF26M9P1nri9Ek+1ruyGiLKPJqiM7F8DX7SHlEuw4h14cJ4mKaWURz3VuvI1iafnZ7EAzBjY2CX7L1CgAElJSdfMO3nyJI8//ji//fYbxhiaNm3Khx9+SHbXTvl0Fd8N+aI9jAi2XhNaW8kJIPm8NX1l2RftPRunUkq5Sb9+/Shfvjy7du3ijz/+oFy5cvTv3z/b31evoFLru/Df3/evgS87W8kJA9H9oeM7HgtNKaVSO33+EqfOJxO37zhRESEu3/+uXbuIi4tjxowZV+e9+uqrVKxYkT/++IPixYu7/D2v0CuojJRuwLY2XxNb7jG2hXaEuC9g76+ejkoppQCI23ecbYdPk3j8HH3GryJun+vHI92yZQt169bFz8/v6jw/Pz/q1q3L5s3ZO2C3JqgMxO07TpfvL3Hv1qbcdeA+4vI3h28ehqS/PR2aUkqxavcxUuxjzl5KTmHV7mOeDcjFfLqKz7E3c2f1/CyW1Xv+uW7++eQUBh3twYrAJ4h78y4+DHuL6YOauTBapZTKmkbli2ITSDEQ4G+jUfmiLn+P6tWrk5CQQEpKCjabdU2TkpJCQkIC1atXd/n7OfLpK6gbeQ5qxsDG7B3dgb2jO/Dto00ICvi3iF7s0YKgLu/R1G8z06tqVZ9SyrOiIkKoWqIg4SF5mdK/Ubbcg6pYsSKRkZGMHDny6ryRI0dSr149svLl/0b4dIK6WVERIUzp34jHWlQgOG8AHy7byenqvaBWD/jlTUiM83SISqlcrmBQAGGF87osOZ09e5bw8PCrr3fffZcJEyawY8cOKlSoQIUKFdixYwcTJkxwyftlxKer+FwhKiKEqIgQbqt8C/eOX80L327g425vIX/Gwuz+MHAFBBbwdJhKKeUSKSkpac7/+uuv3RyJJiinNSxflOfbVGHUom1MKBNC/66fwqSOsOQl6DTW0+EppXKJ9HqSKDtswTXT2pNELjPg1vLE7TvO6EXbqDugEdFNn4Bf34dKbaCqPrirlMp+qXuS8GV6DyoLRIQxPepQqnBenpiewKkmz0OJWjB3CJz+y9PhKaWUT9EElUWFggIY26suh0+d55V5O6DbeLh4BuY+DsZ4OjyllPIZmqBuQGSZEJ68vRLfJxzkuwMF4I4RsHMxbJzl6dCUUspn6D2oG/RYy4os33mEV+ZsJvrx+ygdPhsWvQDlW0KBWzwdnlLKV/08Cn4Znfl6tw2DlsOzP55spFdQN8jPJrzXsy4i8MTMDSR3HAsXk2DR854OTSnly1oOhxEn/31FNLNejvNGnLzh5CQiPPPMM1enx4wZw4gRIwAYMWIEY8aMuW6bOXPmULt2bapVq0atWrWYM2fODb13ajkuQYlIeRGZICLfeDqW8JB8vN61FvF/nuDDjf5w6/OweTZsW5D5xkop5YUCAwOZPXs2R48edWr9jRs38uyzz/L999+zdetW5s6dy7PPPsuGDRtuOha3JigRmSgif4vIplTz24rIdhHZJSLDMtqHMWa3MaZf9kbqvM51StE1MoyPft7F5nIPQWhNWPAMnDvh6dCUUrnBhVNwcr81PJAL+Pv7M2DAAN577z2n1v/ggw948cUXKVeuHADlypVj+PDhvP322zcdi7uvoCYBbR1niIgf8DHQDqgO9BaR6iJSS0Tmp3pl38AjN2FEpxoUzZ+HZ2Zv5VKHDyDpL/jxVU+HpZTydfvXwF+b4MQ+a+w6FyWpwYMHM2XKFE6ePJnputu2bSMqKuqaedHR0S4ZisOtjSSMMctFpGyq2Q2AXcaY3QAiMh3oYowZBXS80fcSkQHAAIDQ0FBiYmJudFdO6V0Jxsaf5rkl53k6vAtl4r9kfUplThaumS3vl5SUlO3HlNNpGWVMyydz7i6j4OBgTp8+7fT6ebYvJY9JQQBz+SIXty/lYuFqNx2HiNCzZ0/efvtt8ubNy4ULFzh9+jQXLlwgICDgmhiNMZw5c+aaeWfOnCElJSXNYzl//rzTZeoNrfjCgP0O04lAw/RWFpGiwOtApIgMtyey6xhjxgHjAKKjo02LFi1cFnBaWgB7U9Yzf8MhBg56E76NI/LA19BpBfgFuPz9YmJiyO5jyum0jDKm5ZM5d5fR1q1bKViwoPMbVLkdfn0LTAril4fAKrcTmJXt01GwYEFeeOEF6tWrR9++fQkMDKRgwYIEBgZe/f2KqlWrsm3bNpo0aXJ13rZt26hVq1aaxxIUFERkZKRTceS4RhLGmGPGmEHGmArpJSdPGdGpBoXzBfDsnB0ktxkFR7bC6s88HZZSyleVbmDd9y4cAQ/OtaZdpEiRIvTo0SPTXsuHDh3KqFGj2Lt3LwB79+7ljTfeuKYl4I3yhgR1ACjtMB1un3fTRKSTiIxzph7VFULy5+G/XWqy+eApPj1UGSrdCTGj4NQht7y/UioXCiwEwaVdmpyueOaZZ65rzTdy5MhrhuOoXbs2b775Jp06daJq1ap06tSJt956i7p16970+3tDFd9aoJKIlMNKTL2Ae12xY2PMPGBedHT0I67YnzPa1SpJh9olGbtsFx0ffJWyu2+3ejzvPtFdISil1A1LSkq6+ntoaChnz569Oj1ixIirz0Rdcfr0abp160a3bt1cHotbE5SITMO6XVNMRBKB14wxE0RkCLAY8AMmGmNuvvkHNzbkuyv8X+carNx5lOd/TmJGsyeRX96Eeg9C+dvcGodSygel15PEiFQjh/tATxLubsXXO535C4GF2fB+br+CAihWIJBh7aoyfPZGvovsQbfC02HhczBoJfjncWcoSilf03J4jk88zvKGe1A+qWd0aeqVKczIxXtIavUGHN0Oqz/xdFhKKS9nfHhUhKwem08nKHc3knBkswkj76rFyXOXeH1XGWtQw1/ehqQjbo9FKZUzBAUFcezYMZ9MUsYYjh07RlBQkNPbeEMjiWzjqSq+K6qXKsTDTcvy+Yo99On9HDX/aAs/vw6d3vdEOEopLxceHk5iYiJHjuScL7Lnz593OukEBQURHh7u9L59OkF5gyfvqMz8DYd49udzLIh6GL9146HBIxBaw9OhKaW8TEBAwNU+7XKKmJgYpx+8zSqt4stm+QP9ea1TDbYdPs3XQb2sZxYWv6Sj7yqlVCZ8OkEZY+YZYwYEBwdnvnI2alMjlJZVbuHt5Uc53ehp2P0z7Fzi0ZiUUsrb+XSC8hYiwisdq3Mh+TIj/2oKRSrAkpfh8iVPh6aUUl5LE5SblL+lAA83LceM9X+xu95wOLoD1n3h6bCUUspr+XSC8oZ7UI6GtKpIsQKBPJ1QElP2Voh5A84d93RYSinllXw6QXnLPagrCgYF8ELbKiQknmRpmSesUXfnPwMr3nHZQGNKKeUrfDpBeaO764VTp3RhhsdCcsU2sPlbWDbSpaNhKqWUL9DnoNzM9mUHvj/yqzWxyz7TpEDyOZjQ+t8VI5pCX5d3T6iUUjmGTycoT/VmniF70nl6ZgKJG35hRp7/ICnJ4JcHHlqQLWO6KKVUTuTTVXzedg/K0bC2Vdlsq8IrhV4n1laXbXkjISzK02EppZTX8OkE5c2KFwqiW71wvj5cmj5nn+Ouo4OIWzrT02EppZTX8OkqPm/U87NYVu/555p5KQgX8eenmB+4f2kezhJEw3JFmDGwsYeiVEopz9ME5WaOSSdu33F6j4vl4mWDn83GHX7xvHB7BLR6yYMRKqWUd9AqPg+Kighh2oDGlL8lP/5+/tSoVgN++xBOJno6NKWU8jifTlDe1pNEWqIiQpjwYH2SU1J4J+Veq8n50v94OiyllPI4n05Q3tyKz1G5Yvl5uFk5Pt+YzF81+8OGGXAgztNhKaWUR/l0gspJHm9ViVsKBvJEYktM/uKw8HlISfF0WEop5TGaoLxEgUB/hreryqoDF1lb+Wk4sA7iv/R0WEop5TGaoLzIXXXDqFemMI9tqEhymabw0whIOuLpsJRSyiM0QXkRm00Y0bkGx85e5POCQ+DiGWtgQ6WUyoU0QXmZ2uGFubdBGd6ON/xVexBsmA7bf/B0WEop5XaaoLzQ822rUqxAII/sbYUpXgPmDYWz/2S+oVJK+RCfTlA54TmotATnDeD/Otdgw+FzfBPxipWcFjwDxng6NKWUchufTlA55TmotLStWYLW1UN5KRaORD8Dm2fD2vGeDksppdzGpxNUTiYijOpWi0JB/jywvTGXK7WFH4bBvlhPh6aUUm6hCcqLFSsQyJt312brX2d4r8AzUDgCZj4A/+z2dGhKKZXtNEF5udurhdKnYRk+ij3CiqixkJIMkzoRdO6wp0NTSqlspQkqB3ilY3UiyxRmwA9n+KPdVLh0hroJL8OR7Z4OTSmlso0mqBwgKMCPz+6LIjhvAA8sPMfRbrOwpVyEcS0gYaqnw1NKqWyhCSqHKF4oiHEPRHHy3CW6z0nip1rvQlgUzHkUptwDhzZ4OkSllHIpTVA5SO3wwkzu14BjSRcZkZCPfR2mQuv/wP7V8FlzmNIDNs+BS+c9HapSSt00TVA5TL0yIUzu14AzlwwdP4plUaEe8MQGuO0FOLwBZj0IYyrBt/1h+RiIGQ3713g6bKWUyjJNUDlQZJkQ/q9JXsoXL8CjU+J5au5eEus+CU9thvu/g+pdYMdiWPZfiBkFE9vC+imeDlsppbLE39MB3AgRuQvoABQCJhhjlng2IvcrltfGrIGN+WDpTj5fsZsFGw+xOHg05c4kXL+yuQzfP2a9ACKaQt+Fbo1XKaWyyu1XUCIyUUT+FpFNqea3FZHtIrJLRIZltA9jzBxjzCPAIKBndsbrzfL423i2TRWWPduCLnVK0ebEMMqen8o9JRaxtMnXXPYLIgU/UvyCILo/5C1ibVggFE7rc1RKKe/miSq+SUBbxxki4gd8DLQDqgO9RaS6iNQSkfmpXsUdNn3Zvl2uFlY4L2/fU4fY4a0Y1q4qx5Iu0m+ZjXvODmPMpe70uvAicTVfgift96q2LYCP6sPaCdoBrVLKa7m9is8Ys1xEyqaa3QDYZYzZDSAi04EuxphRQMfU+xARAUYDi4wx8dkcco7x2JR4Vu/5d1iOeFOZ+MuVAbj70yt9+NWhS+n/MbbAZFjwNOxcAl0+hvzFPBCxUkqlT4wHvkHbE9R8Y0xN+3R3oK0xpr99+n6goTFmSDrbDwUeBNYCCcaYT9NYZwAwACA0NDRq+vTp2XEoHpOUlESBAgXSXb7r+GXeWnue5BQQgYIBcOIiVCxs475qeShbSAg7sIAKf0ziUkBBNtcYzqngKm48guyXWRnldlo+mdMyypwryqhly5Zxxpjo1PNzZILKqujoaLNu3TpX7MprxMTE0KJFiwzXidt3nFW7j9GofFFqhwfzbVwiY5Zs59iZi9zXMIJh7aqS//hWmN4HTh+Cju9DZB+3xO8OzpRRbqblkzkto8y5ooxEJM0E5S2t+A4ApR2mw+3zboqIdAI6VaxY8WZ3lSNFRYQQFRFydbpXgzK0r12S937cwaTf9hKz42/GdK9DwwEx1vNT3z8GJ/6EFsOsyy6llPIgb3kOai1QSUTKiUgeoBcw92Z3mpMHLMwuhYICeK1TDWYObIxNhN6fr+Lj1f+Q0mc21L0Pfhlt3ZtKuezpUJVSuZwnmplPA2KBKiKSKCL9jDHJwBBgMbAVmGmM2eyC98qRQ767Q/2yRVg4tDkda5fi7cXb6ffVek63eQ+aPQXrJsL3QyAlxdNhKqVyMU+04uudzvyFgEufHjXGzAPmRUdHP+LK/fqK/IH+jO1Vl/plQ/i/eVu457NVfNH3BUoG5IefR4KfP3QcCzZvudBWSuUm+p8nlxMR7m9cli/61ifx+Dm6fvwbWysPhFufh/jJsPBZfVZKKeURPp2gtIrPec0r3cKsQY0BuOfTWFZFDLRX902AJS97ODqlVG7k0wlKG0lkTbWShfhucBNKBAfRd9I6VpUbAg0HQexHEJvrO+xQSrmZTycolXUlg/My7ZFGhIXktZJU5WehWmdY/BJs/s7T4SmlchGfTlBaxXdjbikY6JCk4lgTORpKN4TZA2Hfb54OTymVS/h0gtIqvhvnmKQenrKJrS0+g8JlYFpvOLrT0+EppXIBn05Q6ubcUjCQr/o1oFCQP/dP28WBDl+BXwBM6Q5JRzwdnlLKx2mCUhkqGZyXyf0acjklhd7fHOafLl9aY0lN7w2Xznk6PKWUD/PpBKX3oFyjYvECTHyoPkdOX+C+RSmc6/QpJK6Dr7vD8jGwf42nQ1RK+SCfTlB6D8p1IsuE8On9Uez46zSPrC1Fcv0BsG8lLBsJX3bWJKWUcjlv6c1c5QC3/fogu/L8ColYLwAMJJ+DCa3/XTGiKfR1aa9VSqlcSBOUcp496Xy0bCfLfpzP9KBR+JuLYMB253+h6eMeDlAp5Ut8OkHl9vGgssvglhXZkNicXluhkW0r8aYyzy2dQVS5ZlAq0tPhKaV8hE8nKO3N3LV6fhbL6j3/OMypTPzlyoBhyYWalP+sI/defIlCZSOZMbCxp8JUSvkIn05QyrUck07cvuP0+XwV55NTAKFsq76E/L6cRZfehi7zPBekUspn+HQrPpV9oiJCmPJII4a0rEhYSF7++8txNt7xNfgHweTO8NcWT4eolMrhNEGpGxYVEcKzbarw3aNNKFEoiN7fHmHznVPALw9Maq9Nz5VSN0UTlLppxQsFMfWRRhQtkIde3xxhS9sZkDcEvuwEW+d7OjylVA6VaYISkSJOvAq7IdYs054k3KdEcBDTHmlE4fwB9Jh5mDWtpkNoTZhxH/w8ClJSPB2iUiqHceYK6iCwDojL4LUhuwK8GdqThHuVKpyXWQObUKpwEPdN280P0Z9Dnd7wy2iYeg8k/e3pEJVSOYgzCWqrMaa8MaZcei/gWHYHqnKGEsFBzBzYmFrhwQyasZUPCz6F6fAe7FkBHzeAjd+AMZ4OUymVAziToJx5oEUfelFXFc6Xhyn9G9I1Mox3ftrJ4B11ONP3ZyhSAb7tB1/dBYc3eTpMpZSXyzRBGWPOu2IdlbsEBfjxbo86DG9XlR82Habt1L+Iu2MGtHsLDv0OnzWHbx/RRKWUSpfTrfhEJEhEnhaR2SLyrYg8JSJB2RmcytlEhIG3VWDWoMYYAz0+X8Mbx27lzMB10HgIbF8InzaFr7rBH8u06k8pdY2sNDOfDNQAPgQ+AqoDX2VHUMq3REUUYeETzbknKpxxy3fT+pPf+b74IFKe2AS3vwqHN8JXXeGjaIj9H5w7bj1DteIdfZZKqVwsK10d1TTGVHeY/llEtLsA5ZRCQQGMvrs23aPCeXnOJp6YnsDHoQV4uvW9tHnyMWTLXFg7HhYPh59eg5TLgAG/QHhwLpRu4OlDUEq5WVYSVLyINDLGrAIQkYZYzc+9lvZm7n2iyxZh4dDmzN94iPd/2sGgr+OpWqIgX8o4Qo/bT6fLF//dQMeaUirXyjRBichGwAABwG8i8qd9URlgWzbGdtO0N3PvZLMJneuUon3NEnyfcJDxK/fQ8NDTBOcNoFf90jwccYRbZt9zNVHZSIGCJaH5M1DvAQ9Hr5RyF2euoDpmexQqV/L3s3F3VDjd6oWxZs8/fBm7l/Er9zBuuaGebRiNbFuJkxo8164GUdvGwMJnYeX7cNvzEHkf2Pw8fQhKqWyUaYIyxuwDqxUf8BjQDOuKaiXwSbZGp3IFEeHdH3dcM9ZUXEpl4lIqA3D33AvAEJraWvDaue+oPG8orPkc2o6Ccs09FLVSKrtl5R7UZOA0Vis+gHuxWvHd4+qgVO6T1lhTF5Kt/vsMUDm0IL1vf4CKNZ6Hbd/Dklfhy45QrTO0HQ3BYR6KXCmVXbQVn/I6V8aaWrX7GA3KFeHwyfN8sHQnQ6aup2qJgrzYvhm3DlkDsR/B8nfgj5+h9f9BVF+waQf9SvkKn27Fp3KuqIgQoiJCrk53qFWS+RsPMWbxdh6YuIbbKt/CSx0GUbnm3TDvCVjwNGz6Fjp9AMW01aZSviArXzejsFrx7RWRvUAsUF9ENoqIV/ZmrnzHlZZ/Pz59Ky+1r0b8n8dpN3YFb6y6wNles6HzR/DXJvikCfz6gQ7voZQPyMoVVNtsi0IpJwX6+/HIreXpHhXOW4u3MW75bhZsOMR/77qTVoNbw/yn4cdXYNdP5CnxoKfDVUrdBKcT1JXWfEp5g5D8eRjVrTbd6oXz4uyNPDxpHe1rlWBExwkUrzwTfhhG/f1xUNofqnfxdLhKqRvgzIi68a5YR6nsUL9sERYMbc5zbaqwdOvf3Dl2BQsC7oSBKziXtwTMfADmDIYLSZ4OVSmVRc5cQVXL5B6TAG4bslZEqgFPAMWApcYYfRYrl8vjb2Nwy4q0qVGCZ2YmMHhqPEvqlqJNzdG094+FFe/Cn7Fw93gIq+fpcJVSTnImQVV1Yp3LzryZiEzE6pnib2NMTYf5bYGxgB8w3hgzOr19GGO2AoNExIb1bJYmKAVAxeIF+PbRJvwv5g8+WLqTXwIgf59Hue2hVjB7gNWnX6tXoMlQbY6uVA7gzICF+5x4JTr5fpNI1dhCRPyAj4F2WEN49BaR6iJSS0Tmp3oVt2/TGVgAaK+h6hr+fjaG3l6JOYObki8AHpy4hhEbQjjffzlUaWf1lP55S/hphA7loZSXy0orvptmjFkuImVTzW4A7DLG7AYQkelAF2PMKNLpB9AYMxeYKyILgKnZGLLKoWqGBTOicV5izxbni1/3snLXUd7v8RE1i1SEX9+DQwkQ+zE8tECH8lDKSzmdoERkhDFmRDbEEAbsd5hOBBpmEEcLoBsQSAZXUCIyABgAEBoaSkxMzM1H6kWSkpJ87phc7eK5M9xW8Aj9i4wk7NQWGJ9qhcsXrxnK40RwDRIi33BvkB6k51DmtIwyl51llJUrqFdFJC9QBIgHphtjjmdLVBkwxsQAMU6sNw4YBxAdHW1atGiRrXG5W0xMDL52TK52tYxaxHLi7EVe/G4jhzctZ2rgGwSQjIgNm0mGW6rB3Z9TuEQtWng6aDfScyhzWkaZy84yysqdYgOcBxYDpbF6lajjghgO2Pd3Rbh93k0TkU4iMu7kyZOu2J3KwQrny8PH99ajacv23HvhRd65dA89L71C3B2z4OwxGNcClv4XLp33dKhKKbusXEFtM8a8Zv/9GxGZBHwKtLrJGNYClUSkHFZi6oXVU/pN0wELFUDPz2KvGcoDKhN/2T6Ux/xLhPAfXg6Ywt0rxsCWOVZ/fmWbeiRWpdS/snIFdVREoq5MGGN2ALdk5c1EZBpWH35VRCRRRPoZY5KBIVhXZluBmcaYzVnZbwbvp1dQihkDG7N3dAf2ju7At482ISjAhp+Av03ws0GeQrcQ+sAkuP87uHwJJrWHuUPhzDFPh65UrpaVK6ihwHQRiQM2ArWBPVl5M2NM73TmLyQbmozrFZRKLSoihCn9raE8GpUvSqC/jSdnJHDfhNU82DiCZx9eTsFVYyD2f7B5jjV6b4MB4J/H06Erles4fQVljPkdqAtMs8/6GUgz4SjlzaIiQhjcsiJRESHUDAtm/uPNeKhJWSav2sftH65jfonHMI/+ZjU/X/IS/K8hbFsAxng6dKVylSw9Tm+MuWCMWWCMedMYM94Ycya7AnMFreJTzggK8GNE5xrMeawpxQsFMmTqeh6Yd5K9bb+EPt+CLQCm3wsT28LuXzRRKeUmPt3fizFmnjFmQHCw27oKVDlYndKF+X5wM0Z0qs76P09w5/vLGbUrjJMPxUCHd+HEnzC5M0zqCHt/9XS4Svk8n05QSmWVn014qGk5lj5zGx1rl2Tc8t20eHclEy+04uLgOGj3FhzbZTWkmNQR9izXKyqlsolPJyit4lM3KrRQEO/2qMu8Ic2oXqoQ/5m/hdYfrub7wI5cfnw9tHkDju6ALzvBxDaw80dNVEq5mE8nKK3iUzerZlgwX/dryBd96xPk78cT0xO486M1zAm6i8tDf4f2Y+DUQZjSHcbdBlvnwb5VsOId7YxWqZvk1s5ilcqJRISWVYpzW6VbWLTpMB8s3cmTMxL4oFh+hrRqR+fB9+O/+RsrKc24D2uINMA/CB6cq53RKnWDNEEp5SSbTehQuyTtapZgyZbDjF26i6dn/k75+a9TN8Xx2XJ7VV/yuWs6oyWiKfTVEWKUcpZPJygR6QR0qlixoqdDUT7EZhPa1izJndVL8OPWv3hl2VtsPHCSksFBvFT7NO3iByKXL1rrkgLBpaHpExB5v4cjVypn0XtQSt0gm01oU6MEc4c0ZfLDDShdJB9DVgRwz9lhjLl0D/cmj7A6oy1UChY+C2Nrw28fwoUkT4euVI7g01dQSrlDr3GrrumMNt5c2xktDKWRbSsvXZxPrSUvw4p3ofFjUP8RyFvYM0ErlQNoglLqJs0Y2Pjq73H7jtNn/CouJqcAkGKsniqqNWhPsVuHwKmNsHwMLBsJv35g9fPX6DHIX9RT4SvltXw6Qek9KOVuqTujDc4bwCcxfzA5dh9fr9rH3fXCGdJ+EuHnd1qt/la8A6v+Bw0egaZPQr4inj4EpbyG3oNSysUcO6OtWLwA7/SoQ8yzLehVvwyz4w/QckwMr67x46+24+CxVVC1g3U1NbYOxIyG86c8fQhKeQWfTlBKeYvSRfLx37tqEvNcC+6JLs3U1X9y61s/88Y6w7E2H8Ojv0G5WyFmlJWofh0LF896OmylPEoTlFJuVKpwXt7oWotlz7SgQ+2SjF+xm1vf+pl3fvfjZJdJ8MjPEFYPfnwVPqgLq8dB8gVPh62UR2iCUsoDyhTNx7s96rLkqVtpUbU4Hy7bRfM3l/HR9oIk3TMD+i6CohVh0XPwYRTEfwWXkz0dtlJupQlKKQ+qWLwgH99bj4VDm9OgXBHGLNnBrW/9zPg/S3C+z1y4bzbkLwZzh1gDJ8aMtloBaj9/Khfw6QSlvZmrnKJ6qUKMf7A+3z3WhOolCzFywVZajPmFKccqcunhpdBzCqQkW/eolv0XJnWAP1d7OmylspVPNzM3xswD5kVHRz/i6ViUckZkmRC+7t+Q3/44ypjF26mwoAcBi7Zdv+LlizDxzn+ntZ8/5YN8+gpKqZyqSYVifPtoE87eO5f2IfMpe34qQ/O9xSVbICn4kWILgHy3WCtHNIVWr3g2YKWygU9fQSmVk4kIraqG0qJycRZtOszrC4PoeW44jWxbWSc1eKFPL6KOzrHuSX3RFireAa1ehlKRng5dKZfQBKWUF+v5Wew1/fwdxKGfv8/XAeEE8Sav3LKSPgdmw7gWUK0TNH8WStX1SMxKuYomKKW8WFr9/F1KTkFEKBDkz4mzl2hYOZzad74GxV6D2P9ZXSdtnQflW0Kzp6wHgEU8eBRK3RhNUErlEKn7+ateshCTY/fyyS9/0OmjlbSpEcrjrR6jZqNHYd1EWPUJTO4MpepZiapqB7D5efowlHKaJiilcpCoiBCiIkKuTg+8rQK9G5Zhwoo9TFy5h8Wb/6JFlVsY0vIhohs9Br9Ps7pNmnm/9eBv0yegdk/wD/TgUSjlHG3Fp1QOVygogKdaV+bX4a14rk0VNiSepPunsfScuJ4VwR0xQ9ZB9y8gT36Y+zi8XxuWj8H/0mlPh65Uhnw6QemDuio3KRQUwOCWFVn5Qkte6VidvcfOcP+ENdz16WqWSBNS+sfA/d9BaHVY9l8ax/aDBc/AsT88HbpSafLpBKXDbajcKF8ef/o1K8fy51vyRtda/HPmAgO+iqPtByuYebwSF3p/A4/G8nfx5hA/2errb1pv2LvS6p1ixTvalZLyCnoPSikfFejvx70Ny9AjOpx5Gw4ybvkenv9mA28v3s5DTcoSUX4IHfv8D9aOt17bFwL21n7+gfDgPCjdwKPHoHI3TVBK+Th/PxtdI8O5q24Yv+46xrgVu3l78Xby+EGN33tQ7kyCw9rG+pF8Hia0/ne2dqWkPEATlFK5hIjQrFIxmlUqxrbDpxg5K5Y7D7/A5RRDmxoleLLqcSot6mP184dg4zIE5IfI+6DRo54OX+VCmqCUyoWqlihE/1qBvPNgIyb9tpcpq/axaFMy9WzDaCRbibfV4LmuTYjaN8F6pmrNOKjWERoPgdIN9cFf5RaaoJTKxYZOW39NV0rxKZWJpzJchrtn/g10ojjNGF50OV33LLZ6qAiLgsaDoVoX8NN/ISr76NmlVC6WVldKF5NTMIAxUDDQny4N6lG/STfIbyBhqtWV0jcPQ3BpaDgI6t0PQdpSVrmeJiilFHB9V0o2gQkr9zDx171M/HUvbWuWoH+z7kQOeRh2/ACxH8OSl6xRfus9AI0GQeEynj4M5UM0QSmlrkrdldJH94Zw4MQ5Jv+2l6lr/mTBhkPUK1OYfs3q0eaB+fgfTrCuqFZ/Cqs/gepdrPtU4dGeOwjlM3Lkg7oikl9E1olIR0/HopSvCyucl+HtqxE7/HZGdKrO0aSLDJ4az21vxzB+d2FOd/gEntxgJaZdy2D87TDhTtjyPaRc9nT4Kgdza4ISkYki8reIbEo1v62IbBeRXSIyzIldvQDMzJ4olVJpKRDoz0NNy/Hzsy347P4owgrnZeSCrTQetYz/LD/F/ujh8PRmaPsmnD4MMx+ADyJh1adwQfv9U1nn7iq+ScBHwOQrM0TED/gYaA0kAmtFZC7gB4xKtf3DQB1gCxDkhniVUqn42YQ2NUrQpkYJNiSeYMLKPUyO3cuk3/bQpkYJ+jfvQb3H+yPbF1j3qX54AX5+3Rrxt1AYVO+sPVQop7g1QRljlotI2VSzGwC7jDG7AURkOtDFGDMKuK4KT0RaAPmB6sA5EVlojEnJzriVUmmrHV6Ysb0iGdauKpNj9zF19Z8s2nSYOqUL81bR1VTZv9pa8cIp2Dzb+j32w2t3ctswaDncvYGrHMEbGkmEAfsdphOBhumtbIx5CUBEHgKOppecRGQAMAAgNDSUmJgYF4XrHZKSknzumFxNyyhjri6fhkFQt2kAKw8KS/aeZNGhQ1Rx4j/Mvj1/sEdcF4cr6TmUuewsI29IUDfEGDMpk+XjgHEA0dHRpkWLFm6Iyn1iYmLwtWNyNS2jjGVX+bQB/i/FsGxbFL1XDiR29zGa5PmDSX4j8TOXEL882Bo/BjsWw9+biTi6jIiyZSG6HxQq6fJ4boaeQ5nLzjLyhgR1ACjtMB1un3fTRKQT0KlixYqu2J1Sykk2m3BH9VDuqB7KpgMneXtxMXrtHE4j21ZWX6xG1/zd6DPoFWTfSmto+uVjYOV7UKMrNHwUwqM8fQjKC3hDgloLVBKRcliJqRdwryt2bIyZB8yLjo5+xBX7U0o5r+dnsdd0owSVib9cGYC47zfx8vdWY976ZR9n1tDXYc3nEP8VbJwFYdFQv7+VsAK0PVRu5e5m5tOAWKCKiCSKSD9jTDIwBFgMbAVmGmM2u+j9dERdpTxkxsDG7B3dgb2jO/Dto00ICrDhJxDkb2PgreWpcEt+APb/c45PNhhO3vofeHoLtHvLalQxZxC8WxWWvAL/7Pbw0ShPcHcrvt7pzF8IuHywGb2CUso7pO5GKSoihBfaVuWXHUeYsHIPb/6wjQ+W7uSe6HD6Nr2Pcg0GwN4V1kCKsR/Dbx9Cxdutq6pKd4LNz9OHpNzAG6r4lFK5QOpulGw2oWXV4rSsWpyth04xceUepq/Zz1er9tGySnHub1SV27p/iS3pkDU0fdwkmNYLgstA9EMQ+QAUuMVjx6OyX47s6shZWsWnVM5QrWQh3r6nDiuHtWRoq0psPHCSvpPW0mJMDOMSznGiwdPw5EboMRmKlIWl/4F3q8G3/eHPVVbX6/vXwIp3rJ/KJ/j0FZRW8SmVsxQvGMRTrSszpFVFFm8+zOTYfbyxcBvvLNlB5zqluL/xbdR+sAsc2W4NpJgw1WpUEVIeTu4HkwJ+eeDBudpbhQ/w6QSllMqZAvxsdKxdio61S7Ht8Cm+it3Hd+sPMCsukTqlC/NAowi6HtqA7cIpa4PjDo0oks/BhNb/Tkc0hb4uv8Wt3ECr+JRSXq1qiUK83rUWq160elNPOn+JZ2b9TlTiU4xquIr9Qw/Bw0vALxBwGIq+ZB3o+D7cO8NToaub5NNXUFrFp5TvKBQUwENNy/Fgk7LE/nGMybH7GL9iD+OW76ZVleJ0jvyM4kfXElK5MVX9D8O6L2D+k7DkZajVHaL6Qqm6nj4MlQU+naCUUr5HRGhSsRir9/zDD5sPA7B0298sJQ/QFLYBlAJeJFJ2MbL4Wmr8PsNqBVgq0kpUNe+GwAKeOwjlFJ+u4lNK5WbCelOJxRVfhWe2WQ8AXzoP84bCO1Vh/lNwaIOng1QZ8OkrKO2LTynf9VTryjzV2t510r7j9Bm/ikvJKfj72bizeigrdh3lxNlLzN9wiIJBAXSP6ktIgwFWM/S4L6wWgOsmQliU/aqqG+TJ7+GjUo58OkHpPSilcoe0eqo4f+kyizYdYsqqP3l94VbeXrKdDrVK0qdhJaLu+gRp8wZsmGHdq5o7BBa/CLV7WMmqRE1PH5LCxxOUUir3SN1TRVCAH10jw+kaGc72w6eZunofs+MP8N36A1QOLUCfhhF0rdefQg0HWQ/7xn1hdVa7djyE14eovtguF/PgESlNUEopn1elREH+r0tNXmhXlXm/H2TK6j95be5mRi/aRuc6pejTqBq1u42DtqPh92lWg4rvH6OJX3640MeqBjx1AMo21weA3UgTlFIq18iXx5+e9cvQs34ZNiaeZOqafXyfcJAZ6/ZTM6wQfRpG0LneQPI3egz2/caxhaMJXTcR1oyzdmALgD6zoEJLzx5ILuHTCUobSSil0lMrPJhR4bV5sX015iQcZMqqfQyfvZHXF2xlXoE3KHcmgdDUG6Vcgq/u+ne6TBN4eJEbo85dfLqZuTFmnjFmQHBwsKdDUUp5qYJBAdzfKIJFTzTn20ebcGeNUNqeHEbZ81O5I2g6S5t+zWW/IFLwI8UWCJXbQR77M1RnjsCvYyHpb88ehI/y6SsopZRylohcbWjxasfqfBt/gM9/3kq/pTbqyTAa2bayTmrwQtMHiOqeBzbPsYYB+fFVq3f1ym2h3gNQ4Xbw03+trqClqJRSqQz8Ku6a4erjzb/D1d/9yW/2uYVpWG4EMwYXhfVfWY0rts2HgiWh7r0QeR8UKe+B6H2HT1fxKaXUjbgyXP2ktvmvGa7e3yaUK5YPgKAAG2EheVmTVAzT+j/w9Fbo+TWUqAUr34MPImFSR9gwEy6d8/AR5Ux6BaWUUhlI6yHgTQdOMn3tn3y//iCz4w9Qvlh+etYvzd1Rd1KsWic4eQB+n2o9VzX7EQgKhlo9oN79Vi/ryik+naC0FZ9SyhVSPwRcMyyYkWG1eLF9NRZuPMyMtX8yatE23l68ndbVQ+lZvzTNmz2LX7NnYO8KqwowfjKs/dy6wqrbB2rdA/n1QeCM+HSC0q6OlFLZKV8ef7pHhdM9Kpxdf59mxtr9fBt/gEWbDhNWOC/3RIdzT3QDwu6+Ddr9Axu/sa6sfhhmDQNSuS2ER8PlZCh/mz4EnIpPJyillHKXisUL8lKH6jzXpio/bf2LaWv+ZOzSnYxdupNbK91Cr/qluT2qP3kaDoC/ttirAL+2GlYA/DIaOn8EdXt79kC8iCYopZRyoTz+NtrXKkn7WiXZ/89ZZsUlMmvdfh6dEk+R/HmYnXckZZMSrt8wJRnmDLJeAOENoP+Pbo3d22grPqWUyiali+Tj6daVWflCK77oW5/G5Yty53HrIeAOReazoP6X/z4E7BcEjYdYgyoCHFwP0/vAtoVw+ZJnD8RD9ApKKaWymZ9NaFmlOC2rFOf4mYvM/f0gM9ftZ/CKgH8fAk6uznNVHqB+m9etKsCEKVYT9W3zIV8xqN3Ter4qFw0FoglKKaXcaNDX6T8EfM+nsVfnNyzXkRlPj4BdS61ktWYcrPoYStR2aAVY1M3Ru5cmKKWUcqMZAxtf/d1xJGCbTagTXpj1+09wOcWQnGKYHneIDrVvp2CVtnDW3gowYQr88IK9FWAbK1lVvAP883jwqLKHTycofQ5KKeXN0noI+O9T5/lu/QFmxSUybPZG/m/eFtrVLEH36HAa1X8EW8MB8Ndma8j6K1WAeYtAzbutasDwaBDx9KG5hE8nKH0OSinl7VI/BFy8UBADb6vAgFvLk7D/BLPiEpmXcJDZ6w9Qukheutcrzd1R5Qhv8zrcMQL+WAa/T7ceBl77ORSpYCWq2j2gSDnPHZgL+HSCUkqpnEpEiCwTQmQZq3f1xZsPM2tdIu8v3cH7S3fQpEJR7okqzZ01bidf5TZw/iRsnWclq5hREPMGlG5ovfwDodKdOe5BYE1QSinl5YIC/OhSN4wudcNIPH6W2fEHmBW3nydnJJA/jx/tapWkW70wGtXpg+3Efqt7JYD9q60XwPK3r93pbcOg5XD3HkgWaYJSSqkcJDwkH0Nvr8SQlhVZu/cfvlt/gAUbDvFNXCKlgoN4u9hRmjqzo5P7wRivvl+lCUoppXIgm01oWL4oDcsXZUTnGvy45S9mxyfywM7buZzSijrhwQwsf4w2cQOQy5fALwDbHa/CwQSrYUXCFNi70n6/qicU877GZJqglFIqhwsK8KNTnVJ0qlOKv0+fZ26CNQzIY8v9rz4IvDa5Os+E9qRR48FwIclKUr9PhxVjYPlbEBYFtXtBzW5e08u6JiillPIhj09dn+6DwL3Grb46v0HZMswcNAdOHYJN38DvM2DRc7B4uDVsfZ2eULkd5Mnn7kO4ShOUUkr5kPQeBPaz2WhUvghr9x7n3KXL/H36AmN/2km3emGUbvI4NHncer5qwwzYMAt2LoY8BaF6Z6vJetnmYPNz67FoglJKKR+V1oPASReS+WHTYWbHW03W3/tpBw3KFqFrvTDa16pMcOv/wO2vwb5frWS1Za51v6pgKajV3bpf5ab+AHNcghKRFsB/gc3AdGNMjCfjUUopb5b6QeACgf8OsnjgxDnmrD/A7PhEhs/eyGtzN3NHteJ0jQzntsrNyFPuVmg/BrYvsnqtWPU/+O0DKF7DuqoqWoky+xbB/nzZ8oyVWxOUiEwEOgJ/G2NqOsxvC4wF/IDxxpjRGezGAElAEJCYjeEqpZRPCyucl8EtK/JYiwpsPHCS2fEHmPf7QRZuPExIvgA61SlF18gw6tboitTsBmeOwebZ1pXVT68BUA7gy1nw4DyXJyl3X0FNAj4CJl+ZISJ+wMdAa6yEs1ZE5mIlq1Gptn8YWGGM+UVEQoF3gT5uiFsppXyWiFA7vDC1wwvzUodqrNh5hNnxB5ixdj+TY/dRrlh+7qobxsDdjxN0MPbabQGSz8OE1v/OjGgKfRfedFxuTVDGmOUiUjbV7AbALmPMbgARmQ50McaMwrraSs9xIDBbAlVKqVwqwM9Gq6qhtKoayqnzl/hh42Fmr0/kvZ928B6PEx3xKl3rhdGlyAHyTe+KuXwR8cuD7SHXX0GJMcalO8z0Da0ENf9KFZ+IdAfaGmP626fvBxoaY4aks303oA1QGPgkvXtQIjIAGAAQGhoaNX36dNceiIclJSVRoEABT4fh1bSMMqblkzkto38dO5dC7MFkfjuYzMEzBj+gjuygkW0La6lOm+jaVAy5sVZ+LVu2jDPGRKeen+MaSRhjZgOznVhvHDAOIDo62rRo0SKbI3OvmJgYfO2YXE3LKGNaPpnTMrrWzM9iOXjGesbqMtc+Y7V29fmr6zUsV+Sa5u43yhsS1AGgtMN0uH3eTdPxoJRSynXSesbqwqUUAgNsTOnf6JrWgq5gc+nebsxaoJKIlBORPEAvYK4rdmyMmWeMGRAcHOyK3SmllLK78ozV3ZUCsiU5gZsTlIhMA2KBKiKSKCL9jDHJwBBgMbAVmGmM2ezOuJRSSmVdVEQIHSvkyZbkBO5vxdc7nfkLgZtvk5iKVvEppVTO5Q1VfNlGq/iUUirn8ukEJSKdRGTcyZMnPR2KUkqpLPLpBKVXUEoplXP5dIJSSimVc/l0gtIqPqWUyrl8OkFpFZ9SSuVcbu+LzxNE5Aiwz9NxuFgx4King/ByWkYZ0/LJnJZR5lxRRhHGmFtSz8wVCcoXici6tDpXVP/SMsqYlk/mtIwyl51l5NNVfEoppXIuTVBKKaW8kiaonGucpwPIAbSMMqblkzkto8xlWxnpPSillFJeSa+glFJKeSVNUF5IREqLyM8iskVENovIE/b5RUTkRxHZaf8ZYp8vIvKBiOwSkQ0iUs+zR+A+IuInIutFZL59upyIrLaXxQz7GGOISKB9epd9eVmPBu4mIlJYRL4RkW0islVEGut5dC0Recr+OdskItNEJCi3n0ciMlFE/haRTQ7zsnzeiMiD9vV3isiDWY1DE5R3SgaeMcZUBxoBg0WkOjAMWGqMqQQstU8DtAMq2V8DgE/cH7LHPIE1jtgVbwLvGWMqAseBfvb5/YDj9vnv2dfLDcYCPxhjqgJ1sMpKzyM7EQkDhgLRxpiagB/WoKm5/TyaBLRNNS9L542IFAFeAxoCDYDXriQ1pxlj9OXlL+B7oDWwHShpn1cS2G7//TOgt8P6V9fz5RcQbv+gtALmA4L1wKC/fXljYLH998VAY/vv/vb1xNPHkM3lEwzsSX2ceh5dUxZhwH6giP28mA+00fPIAJQFNt3oeQP0Bj5zmH/Nes689ArKy9mrECKB1UCoMeaQfdFhINT++5UP2RWJ9nm+7n3geSDFPl0UOGGsUZrh2nK4Wkb25Sft6/uycsAR4At7Neh4EcmPnkdXGWMOAGOAP4FDWOdFHHoepSWr581Nn0+aoLyYiBQAvgWeNMacclxmrK8kubYJpoh0BP42xsR5OhYv5g/UAz4xxkQCZ/i3WgbQ88he5dQFK5mXAvJzfdWWSsVd540mKC8lIgFYyWmKMWa2ffZfIlLSvrwk8Ld9/gGgtMPm4fZ5vqwp0FlE9gLTsar5xgKFRcTfvo5jOVwtI/vyYOCYOwP2gEQg0Riz2j79DVbC0vPoX3cAe4wxR4wxl4DZWOeWnkfXy+p5c9PnkyYoLyQiAkwAthpj3nVYNBe40hLmQax7U1fmP2BvTdMIOOlwKe6TjDHDjTHhxpiyWDe1lxlj+gA/A93tq6Uuoytl192+vk9fORhjDgP7RaSKfdbtwBb0PHL0J9BIRPLZP3dXykjPo+tl9bxZDNwpIiH2K9U77fOc5+kbcfpK8+ZkM6zL5w1Agv3VHquueymwE/gJKGJfX4CPgT+AjVgtkjx+HG4srxbAfPvv5YE1wC5gFhBonx9kn95lX17e03G7qWzqAuvs59IcIETPo+vK6P+AbcAm4CsgMLefR8A0rHtyl7CuxPvdyHkDPGwvq11A36zGoT1JKKWU8kpaxaeUUsoraYJSSinllTRBKaWU8kqaoJRSSnklTVBKKaW8kiYopZRSXkkTlFJKKa+kCUopLyciZUXknIgkOMwLFZGpIrJbROJEJFZEumayn59FpE2qeU+KyCcikldEEkTkoogUy6ZDUSpLNEEplTP8YYypC1e7wpoDLDfGlDfGRGF19xSeyT6m2ddz1AuYZow5Z9//QVcGrdTN0ASllIuJyCwR+UhEVorIPhFpJiJficgOEZnggrdoBVw0xnx6ZYYxZp8x5kOHGO4TkTX2q6LPRMQPq7PYDg6jw5bF6sF7hQtiUsrlNEEp5Xq1gN3GmGZYg7RNwBq3qjpWgggUkYdEJFpEbr2B/dcA4tNbKCLVgJ5AU/tV0WWgjzHmH6z+49rZV+0FzDTa35nyUv6Zr6KUcpaIBAGFsQZTBKvT3wnG3iu4iFwGLmIN0dAIa3gHROQu4C77NouMMTOy8J4fY3UwfNEYUx+rR+4oYK1VG0he/h0a4Uo13/f2n/2u26FSXkITlFKuVQOIN8ZcGeW3DvAJgIiEY93j8ccaRjwf1gCCQ40xc7DuKzljM3D3lQljzGB7w4Z19lkCfGmMGZ7Gtt8D74lIPSCf0QEflRfTKj6lXKsW8LvDdG2soS7ASlYbgAFYVzUnsAa8y6plQJCIPOowL5/D70uB7iJSHEBEiohIBIAxJglrrKOJWFdTSnktvYJSyrVqYd3nuVLdl9cYc9y+7EqyigQGG2MuXNlIRO4EThhj1mT2BsYYY68SfE9EngeOYA3n/oJ9+RYReRlYIiI2rDF9BgP77LuYBnzH9S36lPIqOh6UUm4mIp2Ae4H9WCOy/iAiTwKfG2POpLF+WawBGWu6Iba9WAPOHc3u91IqM3oFpZSbGWPmAfNSzS6QVnKyuwwEi0jClWehXE1E8gKxQACQksnqSrmFXkEp5QVE5CsgDlhijNni6XiU8gaaoJRSSnklbcWnlFLKK2mCUkop5ZU0QSmllPJKmqCUUkp5JU1QSimlvJImKKWUUl5JE5RSSimvpAlKKaWUV9IEpZRSyiv9P6erVUB/KBhUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "params = [\n", " \"mastercode_with_gm2.in\",\n", "]\n", "pss = [ \n", " (1000011,-1000011),\n", " ]\n", "for pa,pb in pss:\n", " for param in params:\n", " i = hepi.Input(hepi.Order.NLO,13000,pa,pb,param,\"cteq6l1\",\"cteq66\",1., 1.,model=\"/opt/MG5_aMC_v2_7_3/models/MSSMatNLO_UFO\")\n", " li = [i]\n", " li = hepi.mass_scan([i],pa, np.linspace(100,1000,7+8))\n", " mg_dl = mg.run(li,skip=False,madstr=False)\n", " \n", " hepi.mass_plot(mg_dl,\"LO\",pa,logy=True)\n", " hepi.mass_plot(mg_dl,\"NLO\",pa,logy=True)\n", " hepi.title(plt.gca(),li[0],scenario=\"mastercode\")" ] }, { "cell_type": "markdown", "id": "67938ee0", "metadata": {}, "source": [ "## On-shell subtraction through madstr" ] }, { "cell_type": "code", "execution_count": 11, "id": "4628188f", "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running: 15 jobs\n", "./output/90bcfe8bc719ea89d80f8ce26ccfc425f6ff8937aec2e0a3f8031ea161b0d4cc.out\n", "No module named 'madgraph'\n", " No hepmc reader since No module named 'madgraph' \u001b[1;30m[lhe_parser.py at line 50]\u001b[0m\n", "INFO: ************************************************************\n", "* *\n", "* W E L C O M E to M A D G R A P H 5 *\n", "* a M C @ N L O *\n", "* *\n", "* * * *\n", "* * * * * *\n", "* * * * * 5 * * * * *\n", "* * * * * *\n", "* * * *\n", "* *\n", "* VERSION 5.2.7.3.py3 20xx-xx-xx *\n", "* *\n", "* The MadGraph5_aMC@NLO Development Team - Find us at *\n", "* http://amcatnlo.cern.ch *\n", "* *\n", "* Type 'help' for in-line help. *\n", "* *\n", "************************************************************ \n", "INFO: load configuration from /home/apn/data/de.neuwirthinformatik.Alexander/Development/git/hepi/docs/source/examples/output/90bcfe8bc719ea89d80f8ce26ccfc425f6ff8937aec2e0a3f8031ea161b0d4cc.bdir/Cards/amcatnlo_configuration.txt \n", "INFO: load configuration from /opt/MG5_aMC_v2_7_3/input/mg5_configuration.txt \n", "INFO: load configuration from /home/apn/data/de.neuwirthinformatik.Alexander/Development/git/hepi/docs/source/examples/output/90bcfe8bc719ea89d80f8ce26ccfc425f6ff8937aec2e0a3f8031ea161b0d4cc.bdir/Cards/amcatnlo_configuration.txt \n", "Using default eps viewer \"evince\". Set another one in ./input/mg5_configuration.txt\n", "Using default web browser \"firefox\". Set another one in ./input/mg5_configuration.txt\n", "calculate_xsect -f\n", "INFO: will run in mode: NLO \n", "INFO: Starting run \n", "INFO: Compiling the code \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "write ./param_card.dat\n", "INFO: MadSTR: Forcing width MDL_WSUL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSUL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSCL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSCL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSUR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSUR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSCR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSCR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSDL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSDL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSSL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSSL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSBL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSBL to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSDR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSDR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSSR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSSR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MDL_WSBR to zero inside param_card.inc \n", "INFO: MadSTR: Forcing width MP__MDL_WSBR to zero inside param_card.inc \n", "\u001b[1;34mWARNING: The replacements above ensure poles cancelation, and affect all widths\n", " EXCEPT those which enter the resonance-treatment counterterms, which\n", " are taken from the param_card.\n", " Do NOT set these widths to zero in the param_card. \u001b[0m\n", "INFO: Using LHAPDF v6.3.0 interface for PDFs \n", "INFO: Compiling source... \n", "INFO: ...done, continuing with P* directories \n", "\u001b[1;34mWARNING: Could not compile StdHEP because its source directory could not be found in the SOURCE folder.\n", " Check the MG5_aMC option 'output_dependencies'.\n", " This will prevent the use of HERWIG6/Pythia6 shower. \u001b[0m\n", "INFO: Compiling directories... \n", "INFO: Compiling on 8 cores \n", "INFO: Compiling P0_uux_n1n1... \n", "INFO: Compiling P0_ccx_n1n1... \n", "INFO: Compiling P0_ddx_n1n1... \n", "INFO: Compiling P0_ssx_n1n1... \n", "INFO: Compiling P0_uxu_n1n1... \n", "INFO: Compiling P0_cxc_n1n1... \n", "INFO: Compiling P0_dxd_n1n1... \n", "INFO: Compiling P0_sxs_n1n1... \n", "INFO: P0_uux_n1n1 done. \n", "INFO: Compiling P0_bbx_n1n1... \n", "INFO: P0_ddx_n1n1 done. \n", "INFO: Compiling P0_bxb_n1n1... \n", "INFO: P0_sxs_n1n1 done. \n", "INFO: P0_uxu_n1n1 done. \n", "INFO: P0_cxc_n1n1 done. \n", "INFO: P0_dxd_n1n1 done. \n", "INFO: P0_ccx_n1n1 done. \n", "INFO: P0_ssx_n1n1 done. \n", "INFO: P0_bxb_n1n1 done. \n", "INFO: P0_bbx_n1n1 done. \n", "INFO: Checking test output: \n", "INFO: P0_uux_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_ccx_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_ddx_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_ssx_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_uxu_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_cxc_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_dxd_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_sxs_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_bbx_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: P0_bxb_n1n1 \n", "INFO: Result for test_ME: \n", "INFO: Passed. \n", "INFO: Result for check_poles: \n", "INFO: Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05) \n", "INFO: Starting run \n", "INFO: Using 8 cores \n", "INFO: Cleaning previous results \n", "INFO: Doing fixed order NLO \n", "INFO: Setting up grids \n", "INFO: Idle: 2, Running: 8, Completed: 0 [ current time: 13h11 ] \n", "INFO: Idle: 1, Running: 8, Completed: 1 [ 13.4s ] \n", "INFO: Idle: 0, Running: 8, Completed: 2 [ 14.2s ] \n", "INFO: Idle: 0, Running: 7, Completed: 3 [ 15.1s ] \n", "INFO: Idle: 0, Running: 6, Completed: 4 [ 15.2s ] \n", "INFO: Idle: 0, Running: 5, Completed: 5 [ 15.6s ] \n", "INFO: Idle: 0, Running: 4, Completed: 6 [ 17.9s ] \n", "INFO: Idle: 0, Running: 3, Completed: 7 [ 21.1s ] \n", "INFO: Idle: 0, Running: 2, Completed: 8 [ 21.7s ] \n", "INFO: Idle: 0, Running: 1, Completed: 9 [ 23.3s ] \n", "INFO: Idle: 0, Running: 0, Completed: 10 [ 23.4s ] \n", "INFO: \n", " Results after grid setup:\n", " Total cross section: 7.316e-06 +- 2.4e-07 pb\n", " \n", "INFO: Refining results, step 1 \n", "INFO: Idle: 2, Running: 8, Completed: 0 [ current time: 13h11 ] \n", "INFO: Idle: 1, Running: 8, Completed: 1 [ 16.8s ] \n", "INFO: Idle: 0, Running: 8, Completed: 2 [ 18.1s ] \n", "INFO: Idle: 0, Running: 7, Completed: 3 [ 18.5s ] \n", "INFO: Idle: 0, Running: 6, Completed: 4 [ 18.8s ] \n", "INFO: Idle: 0, Running: 5, Completed: 5 [ 21.4s ] \n", "INFO: Idle: 0, Running: 4, Completed: 6 [ 24.9s ] \n", "INFO: Idle: 0, Running: 3, Completed: 7 [ 26.9s ] \n", "INFO: Idle: 0, Running: 2, Completed: 8 [ 28.7s ] \n", "INFO: Idle: 0, Running: 1, Completed: 9 [ 30.8s ] \n", "INFO: Idle: 0, Running: 0, Completed: 10 [ 31s ] \n", "INFO: \n", " --------------------------------------------------------------\n", " Final results and run summary:\n", " Process p p > 1000022 1000022 [QCD]\n", " Run at p-p collider (6500.0 + 6500.0 GeV)\n", " Total cross section: 7.403e-06 +- 1.2e-07 pb\n", " --------------------------------------------------------------\n", " \n", "INFO: The results of this run and the HwU and GnuPlot files with the plots have been saved in /home/apn/data/de.neuwirthinformatik.Alexander/Development/git/hepi/docs/source/examples/output/90bcfe8bc719ea89d80f8ce26ccfc425f6ff8937aec2e0a3f8031ea161b0d4cc.bdir/Events/run_01 \n", "INFO: Run complete \n", "INFO: \n", "quit\n", "INFO: \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n", "stty: 'standard input': Inappropriate ioctl for device\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEvCAYAAAAQB1WgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABHm0lEQVR4nO3dd3gU1dfA8e9Jp4ZQpYRQQu8khNB7b1KkyGuhi6KiYMGfBRW7gIIUFQQUpIhI70jvCb0JSEdAQUSQGnLfP2YDS0iFbHazOZ/n2SeZunduJnt27tw5V4wxKKWUUq7Gw9kFUEoppeKiAUoppZRL0gCllFLKJWmAUkop5ZI0QCmllHJJGqCUUkq5JA1QSimlXJIGKOUQIlJLRExyX84ut1LKdXg5uwDKbRU1xoizC6GUSrv0CioNEZFPRGStiPwgIt6O2kYppVyBBqg0QkQqAPmNMbWAA0AHR2yTEkSkEHA0Nd5LKeW+NEC5IBEZJCJHRaSpiKyxza4OLLX9vhio8bDbOFB1YH0qvVe6ISIlRGSHiFwWkRecXZ60SEQmisgQB+5/r4jUTWD5MRFp6Kj3dzcaoFxTJaA+8AawyjYvAPjX9vslIHsKbJMkD/BP5W2MiYpjP11FJFJE/hGRiyKySkTyP0iZ4th3PxGJEJEbIjIx1rLJInJGRP4VkYMi0jORfWUXkV9E5D8ROS4ij8ez3hW7V7SIXLOb7prIeywWkffimN9GRM6KSFz3h18FVhpjshhjRiS0f1eSnj6UjTFljDGrwLHH7Yh9i0hnEdlvO+9/F5FayVnuCNpJwgUZYzrafq1tN/sfIKvtd3/g74fdJqXYTtQIY8w1EfEFbsSxztPAm0AnYBuQA3gUuJhCxfgDGAI0ATLEWvYR0MMYc0NESgKrRGS7MSYynn2NAm4CeYCKwAIR2WmM2Wu/kjEmc8zvInIM6GmMWZ7E8k4CPhCRd8y9Qwo8AUyJK8ADQcC0JO7/HiLiFc8+XVpaLXdaIyKNgE+w/j+3AHmTs9xhjDH6SuIL6ApsBKYDZ4CTQLPEliWyT4k1fQDYDTximy6LdfVTHfjeNu8NoMvDbBPrPV8HfgcuA/uAtnbLfgCigWvAFeDVWNtmBr4GmtumGwH54niPtcArqfA3GgJMTGB5Cdvfp2M8yzNhBafiserg40Te9xjQMI75+YCfgb+w7su9YJufwfY3qm23bgBwHagQx35+BW7bll8BigOlsK6W/wH2Aq3jKNNrwC6sLw1ecSx/xbb8P2A8VlBeZDsXlgMBSTxPXgNO25b9BjSI7/yJr04SKjcQCMyybXMB+Mq2bmJ1UAnrC9FlrP/NacCQhP42cdR9N2Ce3fQh4Ce76ZNARfvzIK7jtls+0HZsl2xl8kvgvLrvuBPYd7zHk1A92JZvwPoSF185ElzusP/n1H7DtPwCPradFO2wmkcHAscTW5bA/mph3RvKYDcvA1ag6wV4206q12zLPsP6oJ8C+DzMNrHK8Zjt5PbA+ob0H5DXbvkx4vjwtVseyN0PjKfiWWcpsB/oCORMpF7mY33gxPWan8i2cQYoYDRwFTC2+skcz/aVgKux5g3E7gMqnu3uqyNbfUYCbwM+QBHgCNDEtvxbYJzd+n2AHQm8xyqsqzRsf+fDWF88fLCady8DJWKVaYft75MhnjJvwgpK+YE/bXVTCfDDCorvJHaeYAX9k9i+mACFsB4zuK9uEquTuMoNeAI7geFYXyD8gJqJ1YFt3nHgJdu6HYBbtnMk0XLYlacI1rnnYTv+48Apu2UXAY84jjWuc+IY1hVIPqwm9/3AM/H8veM87rj2ndDxJFQPdu9zE+sLyGHgFFYgzJCU5Y58OeWDPq2+gAXAh3bTubE+8PwSWpbA/jywmnqWcm+QGgyMsP3cDHgmoWzJ3iaBfe0A2thN3/ePFsc2c2w/n45n+SPAF8AJrCuBeUBuB/yN4r2Csv2j1cRqavSOZ51awNlY83oBqxJ537g+jKoCJ2LNGwRMsP1eE+uDz882vR54KYH3WMXdAFULOIvtg9E2byowOFaZuidS5q520z8DY+ymnwdmJ3aeAMFYwa1hXPXKvR/aCdZJXOUGqmFdFcS+AkywDrCau//ArpUC60pgSFLKEWvZSaAy0Bn4BivIlMS6upobz7HGdU4cA/7PbvpTYGw87xnncce174SOJ6F6sP2eD+uzKgLrC0dO27n4QVKWO/KlnSSSpxww0246N3DFGHM9oWW2nnVxZU24DTyJ1Sz2jN22e4CWwACsD/zbSSjbg2wDgIg8aesd9o+I/IPVRJgzqdvb7BORlljNH/cxxpw1xvQ3xhQEwoDyWM04qcYYc9sYsw4oAPSNZ7Ur3L1vFyMr1jfz5AoC8sXUq61u38C6YsFWlvPAoyJSFKtefkzivvMBJ40x0XbzjmNdCdk7mch+ztn9fi2Oafv7bHGeJ8aYw0B/rC9Hf4rINBHJF8/7JVgn8ZQ7EKs1Iva9qMTqIB9w2tg+Ze2WJ6ccMVYDdbE+7FdjfVmoY3utjmeb+Jy1+/0qdnUcS3zHHZeEjiehegDr7www0hhzxhhzHhgGNE/icofRAJVEIpIN64T5y252B2BRQssAjDGLjTES+4X1jf57YBkw1m7bfUBh4H1jzH7b+/uLyBZbD7GycRTxQbZBRIKwmpr6ATmMMdmwgp19FggTx6axLQTewmoySpCxOifsxmq2iKtMi2L1kLN/LUpCWRLjBRSNZ9lBwEtEitnNq4B1fyO5TgJHjTHZ7F5ZjDH2/9jfY31J+T9giTHmXJx7ut8fQKCI2P8PF8S6D2QvKX+7RCV2nhhjfjTG1MT6oDRYN9TjKkNS6iSubQrG0bMxsTo4A+QXEYm1PDnliBEToGrZfl9N4gHqYes+vuOOa98JHU9C9YAx5iJWs539Pk1SlzuSBqikK4d1xfO4iHiJSAvgWaxvjQktS0gNrG84bYwx1+zmP2n7OcFu3lWgBfdepdl7kG3AChIGW3AVkW5Y34ztncNq007IBmBbXFduIvK6iNQQEV/b62msf/YJsdcFMMY0M8ZkjufVLK5tbPXuhxX0PUXEzzYvt617bGYR8RSRJkAXYEU87/0f1k3p90Qkk4jUwGrG+iGR44/LFuCyiLwmIhls719WRKrYrfM9VtNYL6zm3qTajPX3fVVEvMV69qYVD9jLLwniPU/Eej6rvq0H53Wsb9z2VzX2509S6iS2LVgfsh/b/iZ+tr9LYnWwEYgCXrAtb4d1lfog5VgN1MNqij+FdV+3KVZv1O3xbJOU/5uExHfcce07oeNJqB5iTACet/2/BGDdr5qfjOWO4eg2RHd5YQWcScBsrOaeCKB6YsuSsN/YvfjCsJ5dOoldDy+75ROBsg+7TazlH2B1QY+5dF+N7V6HbXkbrHtH/wADE9jPfW3ltvkfYl2ZXMH6x1oEVE3hv89grA9Q+9dgIJfteP6x1dFuoFesbRcBb9hNZ7f9Lf+zHffjSXj/Y8Tfi28qVrPORawrzNj3JVbZlvkm8h6rYv1dytiO7RKxetUlVKb4lgOTufceVk9geWLnCVZz7Rbbuf831gdXPrvt7jl/EquTuMqN9Y1/NlZPtvPAiCTWQShWAInpvTade++9JPi3ibWvM9x7rywCWBRfncY+7njqfDAwOYH3jO+449p3vMeTUD3YlntjdST6x7b9COzunye23FEvsb25SoSIjAEOGmOGJ2dZMt/DF6sX1VisoLPJGDMq1joTgc+NMXsedBulVPpm+0w4ZYx509llSYg28SVdOawuocldlhzvYl1hfIX1nEQLEfFxwDZKKeXyNEAlXVmsB2KTuyxJRCQM6zmYbsa6rJ2J1X033h5CD7KNUkqlFdrEl4aIyEKs1DvHga+NMRMdsY1SSrkCDVBKKaVckjbxKaWUckkaoJRSSrmkdDHcRs6cOU2hQoWcXYwU9d9//5EpU5yJGJSN1lHCtH4Sp3WUuJSoo8jIyPPGmFyx56eLAFWoUCEiIiKcXYwUtWrVKurWrevsYrg0raOEaf0kTusocSlRRyJyPK752sSnlFLKJWmAUkop5ZI0QCmllHJJ6eIelFJKpQW3bt3i1KlTXL9+3dlFSTJ/f3/2709apjc/Pz8KFCiAt7d3ktZ36wAlIq2AVsHBwc4uilJKJerUqVNkyZKFQoUKce/wTa7r8uXLZMmSJdH1jDFcuHCBU6dOUbhw4STt262b+Iwx84wxvf39/Z1dFKWUStT169fJkSNHmglOySEi5MiRI1lXh24doJRSKq1xx+AUI7nH5tZNfCkh8vhFNh05T3iRnIQEBTi7OEqpdG74soN8ueJQouu92KAYLzUqngolchwNUAmIPH6RLt9s4ubtaHy9DvNjr3ANUkopp3qpUfF7Ak+nrzcCML1PtRTZf+bMmbly5co98y5dusTzzz/Phg0bMMZQo0YNRo4ciaNvn2iAiqXT1xvZfPTv++bfiIqm/ZgNd6arFs6eYieEUkq5sh49elC2bFm+//57AN555x169uzJTz/95ND31QAVi33QiTx+ka7jNnEzKppoA5l9Pfnu6TDCCmd3YgmVUuquy9dv8e/1KCKPX3RIC8/hw4eJjIxk+vTpd+a9/fbbBAcH8/vvv5M7d+4Uf88Y2kkiASFBAUzpGc6AxiUY9Xglcmfxo+u4TczadsrZRVNKKSKPX+TA2cucuniNruM2EXn8Yoq/x759+6hYsSKenp535nl6elKxYkX27t2b4u9nT6+gEhESFHDnW0nN4Fw8MzmSl2fs5Nj5/3ipUXG37nGjlHJtm45cINo25uytqGg2HbngVvfJ9QoqGfwzejOpexiPhRRgxK+HeXHaDq7fuu3sYiml0qnwIjnwsH1H9vbyILxIjhR/j9KlS7Njxw6io6PvzIuOjmbHjh2ULl06xd/PngaoZPLx8uDTDuV5tWkJ5u78g67jNnPhyg1nF0splQ6FBAVQ8pEsFAjIwJSejullHBwcTKVKlRgyZMideUOGDKFy5co4OkuPBqgHICI8WzeYUY9XZs/pS7QZtZ79Z/51drGUUulQFj9v8mfLkGLB6erVqxQoUODOa9iwYYwfP56DBw9StGhRihYtysGDBxk/fnyKvF9C9B7UQ2hRPi8FAjLQ+4cI2o3ewLCOFWhWLq+zi6WUUg/MvinP3uTJk1O5JBqgHlqFwGzM61eTPpMj6TtlGy80KEb/BsXw8NDOE0qplBdfJolCry+4Z1ozSSgAcmf1Y1rvcN78ZQ8jVhzit7P/MrRjRTL7avUqpVJW7EwS7kzvQaUQXy9PPu1QnndalWb5/j9pP3oDJy5cdXaxlFIqzdIAlYJEhG41CvN99zDO/nud1qPWsf7weWcXSyml0iQNUA5QIzgnc/vVIHcWX578bgvj1h7BGOPsYimlVJqiN0kcJChHJmY9W4NXftrJkAX7iTx+kU87lCeLX9KGOlZKqTit/AhWf5z4enVeh3qDHF8eB9IrKAfK7OvF6K6VebNFKZbuO0ebr9bz29nLzi6WUiotqzcIBl+6+wqqab3s5w2+9MDBSUQYMGDAnenPP/+cwYMHAzB48GA+//zz+7aZPXs25cuXp1SpUpQrV47Zs2c/0HvHpgHKwUSEnrWKMLVXOJdvRPHoqPXM3n7a2cVSSqk4+fr6MmvWLM6fT9r98927dzNw4EDmzJnD/v37mTt3LgMHDmTXrl0PXRYNUKkkrHB2FrxQk3IF/Ok/fQdvzt7NjSjN46eUekg3/oVLJ+HklhTZnZeXF71792b48OFJWn/EiBG88cYbFC5cGIDChQszaNAgPvvss4cuiwaoVJQ7ix8/9qxKn9pFmLzpBB3HbmTxnjOMWnnYIWnylVJu7uQWOLcH/jkOk1qnWJB67rnnmDJlCpcuXUp03QMHDhASEnLPvNDQ0BQZikM7SaQyL08PBjUvRaWCAbw8fQfPTN6GAL7eHg5L9qiUclPH1oKxpSa6fdOaDgx76N1mzZqVJ598khEjRpAhQ4aH3t+D0gCVyuIaUt4A12/pkPJKqWQqVAvEwwpSnj7WdArp378/lStXplu3bgmuV6JECSIjI6lQocKdeZGRkZQpU+ahy6ABKpXFNaT8jVvRGKBQjoyMf7oKRXNldl4BlVJpR2AY5CkL1y9B+3EpcvUUI3v27HTs2JHx48fTvXv3eNd74YUXePrpp6lfvz6FChXi2LFjfPjhh8ycOfOhy6D3oJwoZkj5gU1KMKhZSS5du0WrkeuYGXlKH+xVSiWNb1bwD0zR4BRjwIAB9/XmGzJkyD3DcZQvX55PPvmEVq1aUbJkSVq1asWnn35KxYoVH/r99QrKyeyHlG9TMT8vTtvOwJ92su7QXwxpW04TziqlUtWVK1fu/J4nTx6uXr2bU3Tw4MF3nomKcfnyZdq1a0e7du1SvCz66edCHvH348de4YxaeZgvlh9k+8l/GNmlEuULZHN20ZRSriK+TBKD/e+ddoNMEhqgXIynh/BCg2JUK5qDF6dup93oDfRvWIxn6hTFy1NbZJVK9+oNSvOBJ6n0E89FVSmUnUUv1qZ5ubx8vvQgHb/eyLHz/zm7WEopB3Pn+8/JPTYNUC7MP6M3I7pU4svOFTn85xWaj1jL1C0n3PoEVio98/Pz48KFC275P26M4cKFC/j5+SV5G23iSwPaVMxPWOHsvPLTLgbN2s3yfedondf9TmCl0rsCBQpw6tQp/vrrL2cXJcmuX7+e5KDj5+dHgQIFkrxvDVDOdnKL9fR3oVoJdhPN65+B77uH8f3GY3y06ABbfo/Gr8BZmpR5JBULq5RyJG9v7zs57dKKVatWUalSJYfsWwNUaouOhotH4c99cGQ1RE6A6Nvg4Qll2kHe8pAlL+QIhlwlwfvuNxMPD+HpGoWpEZyTnuPX0eeHSNpXLsDbrUrjn0HHmVJKuZc0F6BEpC7wPrAXmGaMWeXM8iRJ1E34bQEcWAh7Z0F01P3rREfB7hnWK4Z4QO4yULi29QqqDn5ZKZYnC2+F+7ErKh+jVv3OusN/8XG78tQrmTv1jkkppRwsVQOUiHwHtAT+NMaUtZvfFPgS8ATGGWMSGi7SAFcAP+CUA4v78K5fgo2jraukK+cgYw4o2wEK1YQ8pa3lUx+3kjx6+sCTcyBXCfj3Dzh/EM7thZObIWI8bBoFHt4Q3ADKtMM3OgsvNy5Bo9KPMOCnHXSbuJXHQgrwZku9mlJKuYfUvoKaCHwFfB8zQ0Q8gVFAI6yAs1VE5mIFq49ibd8dWGuMWS0ieYBhQNdUKHfyRN+GiO9g1Udw9QIUawJhvaBofaspz95Tc++/B5UhmxXAyjxqTd+6Dqe2wMElsHc2HFxMDfGGf9tTrkoP5vWrwYhfDzN29RHWHjrPx+3LUbeEXk0ppdK2VA1Qxpg1IlIo1uww4LAx5giAiEwD2hhjPsK62orPRcDXIQV9GJdOwazecHy9FXQaD4F8FeNfPzAs8Rxa3n53m/kavQ+ntnJm8XDyH1gAu6bhm6ccr1TpTtOeTXh59mGenrCVTqGBtKyQl12nLhFeJIcO46GUSnMktfvb2wLU/JgmPhHpADQ1xvS0TT8BVDXG9Itn+3ZAEyAbMCa+e1Ai0hvoDZAnT56QadOmpeyBxCHg722U3jcUMVEcKtaHc3nqgYhD3uvKlSv4+3mS+8/V5D+9mMz/HeWWVyZO5m3ONzcaM+1EJgAE8PaAV6v4ERzgmfBO3cyVK1fInFkzw8dH6ydxWkeJS4k6qlevXqQxJjT2/DQXoB5EaGioiYiISKndxW3XDJjdF3KVgo6TIEdRh77dqlWrqFu3rjVhDJzcwqE5H1H0/Cpu4UW/W/24YPwJ99jPpuhSbDPF72z7YoNivNSoeNw7diP31JG6j9ZP4rSOEpcSdSQicQYoV+jFdxoItJsuYJuXdmwdBwsGWE16nX8Ev6yp+/4iULAq80t+yrxfV9PTcwEves6iqMcZvIniFl50vfnGPUFKKaVcnSsEqK1AMREpjBWYOgOPO7dIybBvDiwYCMWbwWMT73luKbW9dKo/L/muvzNtjBW7PM1NZvkOvjP/9onqwKLUL6BSSiVDqubiE5GpwEaghIicEpEexpgooB+wBNgPzDDG7E3Ncj2wE5vg515QoAo8NsGpwQmAbgth8CXr1WMZ4p0BxBPx9ML4WZ0kIqKL89rZ+qw7mHZSqSil0qfU7sXXJZ75C4GFqVmWh3b5HEzrCv4FoMs08M7g7BLdKzDsni7s8kg52D6ZcquHEfrfEPZMnszkQt1p3bkPWTM6ObAqpVQc3DqbuYi0EpFvLl26lLI7jo62OkTc/M+655QpR8ruP6UEhkGtAdZP7wwQ1gvfl3Zyq+VI8maM5v9OvM3fn1Vm/6KxcPuWs0urlFL3cOsAZYyZZ4zp7e/vn/jKybF5LPy+App8ALlLpuy+Hc3LB+/QJ8nx6g6O1RvFbfGh1ObXuPBxWa6t/9p6KFgppVyAWwcoh7jwOyx/B0o0h9Duzi7Ng/PwpFCd/6PAoAh+KTmU4zeykGHZq1wfWhY2jIQbV5xdQqVUOqcBKrkWDwJPX2j5hcMewk1Nvt5etO3cE5/ey3k98wdE/Jcblr5J9PCysOoTuPaPs4uolEqnNEAlx6FlcGgJ1HkFsuRxdmlSVNkC2Xiv/7NE1pnEY1Hvse5GUVj1IXxRHlZ9bCW2VUqpVKQBKqmibsLi1yF7Uaja19mlcQgfLw9ebFiM9/t147Ps79Lsxkfs8CpnJb39ohys/hSu/+vsYiql0gm3DlAp2otvxxS4cBiafAhePg+/PxdW8pGs/PJsdVo1aUzHf/rRWT7lTLbKsPID+LI8rPkcbly2RgNeO9T6qZRSKcwVMkk4jDFmHjAvNDS010Pt6HYUrP8S8lWC4k1SpnAuzsvTg2frBtO4dB5embmLascK0KNIR171m4Xvr+/Dui8g6pqVrsLTx3rmKrGs7EoplQxuHaBSzL7Z1jDtjSe7RceI5AjOnYWZz1Tnu3VHub58CL4ey6wFNy/fXSnqGoxvdHe6zutQb1DqFlQp5XY0QCXmxGZY8gb4F4QSLZxdGqfw9BB61S7CxctBVuZEm2gjWAMcCx6SulnxlVLuTwNUQk5ugUktrSHZPbzhdES6bsYKaPEO0c3e5vuNx/hw4QHKRh8g3GM/26QUr+TaTMjFRZC7DOSvfDdTrVJKPSANULFNaG6Nhhtb9K17m7GCaljJWdORTl9vZPPRv+9Mb6M4225bQ3i0PxNMS49gBp6dQaEfO1r10/BdCKzirOIqpdI4DVCx2Qedk1tgUmvrCko7AjC9T7U7v0cev0jXcZu4cSsaA/h4elGpWQ8Cq74F27+3uqSPbwglW0KDtyFXCecVXCmVJmmASkisjODpOTjFFhIUwJSe4Ww6coHg3JmZvvUk78/fx9ydf/BJ+06UfKELbBoN60fAb+EQ8jTUfQMy53J20ZVSaYRbBygRaQW0Cg4OfvCdBIZpYIpHSFAAIUHWOFONS+dh3q4zvDt3Ly1HrKNv3aL0qz8A39DusPoT2Doeds+0squH9wUvXyeXXinl6tz6QV2HZTNX9xERWlfIx/KX69C6Yj5G/nqY5l+uZetfHtD8M3h2ExSsZiXa/aoK7P3F6kihlFLxcOsApVJfQCYfhnWsyKTuYVy/Fc1jYzfy1uw9XM5SGLrOgCd+AZ/M8NPT8F1TOBXp7CIrpVyUBijlEHWK52LpS7XpXqMwkzcfp/HwNazYfw6K1odn1kKrL+Hv32Fcffi5F1w65ewiK6VcjAYo5TCZfL14u1VpZvWtTlY/b3pMiqDfj9s4fzXK6jTxwnbrntS+OTAyBH4dYo1SrJRSaIBSqaBSwQDmPV+TAY2Ks3TvORoOW83MyFMYn8xWF/TnI6zu6Gs+s+5P7Z5pZfDQRLRKpWsaoFSq8PHy4PkGxVj4Yk2Cc2Vm4E87efK7LZz8+ypkKwgdxkP3JZApJ/zcAyY0ta6oJrXWIKVUOuXW3cyV6wnOnYUZfaoxZcsJPll0gMbD1zCgcXG635qGx5pP7q5ooq2fmohWqXTLra+gUnQ8KJViPDyEJ8KDWPpSbaoXzcGQBfuZvvWks4ullHIxbh2g9Dko15YvWwbGPRXKyC6VGHqrHUVvTuWjsE1ce+Nv6LHMuj/VfhwUbWBtkLOEPjStVDri1gFKuT4RoZXtAd/HQgrw9ZojNP5iNeOP52RUVBsiszaE//sZukyzciJObgdTu8DfR5xddKWUg2mAUi4hW0YfPm5fnum9w7kdbXh//n4+W/Ibj3+7icgT/0CJZvDcZmg4GI6ugVFVYflguHHFySVXSjmKdpJQLiH2UB4xbkRF037MhjvTVQuHM71fBKx4F9YNhx1TodG7UK4jeOj3LaXciQYo5RLiGsrjZpTVky/aQNXC2fmwXTmK5spsrdR2LIT2gEWvwi99YOs4aPYJ5A9xRvGVUg6gXzmVy4kZymNA4xLM6FONT9qXY/+Zf2n2xVq+XH6IG1G3rRUDq0DPFdBmFFw8Dt/Wh9nPwZU/nXsASqkUoVdQyiXZD+URWig79Urm5v35+xm+/CDzdv3BR+3KUaVQdqtZr9L/QanWsOZT2DTWSp1U51UkupSTj0Ip9TD0CkqlCbmz+DGySyUmdKvCtZu3eWzsRgbN2s2lq7esFfyyQuMh1rAeQdVg2VtU2fo8HFiow3oolUZpgFJpSr0SuVn2cm161y7CjIiTNBi2mvm7/sDEBKGcwdD1J+j6M0Y8YVoX+OFROLfPqeVWSiWfWwcozSThnjL6ePFG81LMea4Gef396PfjdnpMiuDUxat3VyrWkIjQL6HpJ/DHdhhbExYMhKv39xRUSrkmtw5QmknCvZXN78/s52rwdsvSbDpygUbD1jBu7RGiblu9/4yHF4Q/A89vh9BuEDEeRlSCRYNg9WeahFYpF+fWAUq5P08PoXvNwix7uc6dvH6Pjl7PntN2V82ZckCLofDMesheGDaPhpVDYGILDVJKuTDtxafcQn5bXr9Fe87yzty9tP5qHY2CvKhSLYpMP7aG4+vv3+j2zXszpQfVgG4LU6/QSqkE6RWUchsiQvNyeVn+ch26hBVkybEoGg9fw8pqE2HwJevVYxl4ZQDxBA8v8Mpo/Qx/Djr/6OxDUErZ0QCl3I5/Bm8+aFuO/1X1I6OPJ90mbuW5H7fx5+XrVjb0p+ZC/f9Bt0XQfydUfBw2jYaRlWHreLgd5exDUEqhAUq5sWIBnix4oRYDGxdn2b5zNBy6mh83nyA6fxWoNcAKVplzQ+uR0Gc15CoJC16Gr2vB7786u/hKpXsaoJRb8/HyoF/9Yix+sRZl8vnzxi+7aTFiLe/N20vk8Yt3V8xbAZ5eAB2/h5v/wQ9tYUpH+Oug8wqvVDqnnSSU2xu+7CBfrjh0Z3r/2cvsP3uZ79Yfu2e9FxsU46VGbaBYE9g8FtZ8DmOqQZWeUOc1yJg9lUuuVPqmV1BKxebtBzX7wwvbodITsOUb6/mpTWPh9i1nl06pdEMDlHJ7LzUqzrGPW3Ds4xb83Lc6ft4eeAr4eHqQP5sfAC3K56Vr1YL3bpg5F7T6Ap5ZB/kqwuLXYHQ1+G2x5vdTKhVoE59KV2KG8th05ALhRXJQNn9Wvll9hJErD7Pmt794pWkJulYNwtND7m6Upww8MRsOLoGl/4OpnaBIPWjyIeQp7bRjUcrd6RWUSndCggJ4rl4wIUEB+Hp58nyDYiztX5uKBbPx9py9tIudiQJABEo0tbKlN/3Ylt+vBszrD1f+cspxKOXu3DpAabJYlVSFcmbi++5hjOhSidP/XKf1V+t4b94+rtyI9UyUpzeE97XuT4X1hu0/WM9Prf8Som44p/BKuSm3DlCaLFYlh4jQukI+Vgyow+NVCzJhw1EaDVvN4j1n7w7nESNjdmuI+b4boWA1WPY2jAqzBks8sRnWDtU8f0o9JLcOUEo9CP8M3gx5tByz+lYnW0YfnpkcSc/Yw3nEyFUcus6AJ34B74ww40mY0BR+HQKTWmuQUuohaCcJpeJRqWAA8/rVYML6YwxffpBGw9bQv2ExutcsjLen3Xe7Cc3vTUZrrOE+iLqmyWiVeggaoJRKgJenB71qF6F5+bwMnruXjxYd4Jftp/mgbTlCggKsleyDzsktMKmV7X6UAU8/qD0QqvcD7wxOOQal0qpEm/hEJHsSXtlSoaxKOU3+bBn49slQvnkihH+v3aL9mA0MmrWbS1djPbgbGAZPzYMGb8FjE6F4Y2vsqZGhsHumPj+lVDIk5QrqD9tLEljHEyiYwHKl3ELjMo9QIzgnw5cdZMKGYyzbd5Y3W5SmTcV8iNj+RQLDrBdAmbZwbB0sHgQ/97BSKDX5CAKrOO8glEojktJJYr8xpogxpnB8L+CCowuqlKvI5OvFmy1LM7dfDfIHZKT/9B08MX4LR8//F/cGhWpC79XQZjT8cwLGN4SZPeDS6dQtuFJpTFICVLUUWkcpt1Imnz+z+lbn/UfLsvPUPzT5Yg1fLD/IpiPnGbXy8L3Z0j08oFJXeH4b1H4FDsyHr0Kt7uj6/JRScUq0ic8Ycz0l1lHKHXl6CE+EB9GkTB7en7+fL5YfQrAST/h4eTClZ/jdzhQAvpmh/ptWEtolb8CK92D7ZCs7RfEmTjsOpVxRknvxiYgf8CxQEzDAOmCMBieV3nX6eiObj/59Z9pg9YW4fiua9mM23JlftXB2pvexNTYEBEHnKdbAiItegx87WsN8NP0IchRN5SNQyjUlp5v598BlYKRt+nHgB+CxlC6UUmnJnaADRB6/SNdvN3EjKhoDZPLx5I0WpehSpSAeHnH0MypaH55ZD1u+hlWfwOhwqNbP6prukyn1DkIpF5ScAFXWGGOfunmliOxL6QIplZaFBAUwpZeVLT0wIAM/bjnB/37Zw08RpxjyaFnK5o8j7ZaXD1R/Hso9BssHw7phsHMaNH4fyra32guVSoeSk+pom4iEx0yISFUgIuWLpFTaFpMtvXXF/EztFc7wThU4dfEqrb9ax7vz9nL5ejyDHmZ5BNqOhe5LIVNOq1v6xJZwdk/qHoBSLiIpD+ruFpFdQAiwQUSOicgxYCMQ6uDyKZWmiQhtKxVgxct1ebxqQSZuOEaDoauZt/OP+xPQxihYFXqvgpbD4c998HUtWPgKXLsY9/pKuamkNPG1dHgplHJz/hmtBLQdQgJ5c/Zunp+6nRkRJ3mvTVkK54zjXpOHJ4R2h9KPwsoPYOs42POz1fvPNwsUrn33YWCl3FSiV1DGmOPGmOPAOaA9MBwYBrSzzXNZOh6UcjUVA7Mx57mavNu6DDtOWM9ODV92kOu3bse9Qcbs0GIo9FkDWfLB+i/g1/etpj/NlK7cnFv34jPGzAPmhYaG9nJ2WZSK4ekhPFW9EM3KPsKQBfv5csUh5uw4zXttylK7eK57V46dKT3G7RuaKV25Pe3Fp5ST5M7qx4gulegYGsjbc/bw5HdbaFE+L2+1KM0j/n7WSvdlSm8Nt29aPfuMsbqi133dGt1XKTejvfiUcrKaxXKyqH8tXm5UnGX7ztFw2Gq+W3eUqNvR964YGAZPzYX6/4Nui+C5LRBY1cpIMbYmHFnllPIr5SjJCVBx9eKrYtfLTyn1gHy9PHmhQTGWvVSbkKAA3pu/j9ZfrWfbiVg99wLDoNYA62fOYOj6E3SZBlHX4fs2MP0JKyGtUm4gOU18TR1WCqUUAEE5MjGxWxUW7TnLe/P20X7MBjpXKchrTUuQLaPP/RuIQIlmUKQebBwJa4bCoWVQ8yWo8YIOkqjStCRfQcX05ovv5chCKpWeiAjNy+Vl+YA69KhRmBkRJ2kwdDUzI0/F/+yUt5+VJb3fVivp7KoPYVRVOLBAB0lUaVZSHtTdlhLrKKWSJ7Nt3Kl5/WoSlCMjA3/aSfMRa3l33t57h/Kwly0QOk6CJ+eCd0aY9jhMbg/nD6Vu4ZVKAUlp4iuVyD0mAeJIMKaUeljDlx3kyxV3g8v+M5fZf+YyE9Yfu2e9FxsU46VGxe/OKFIHnllrPeC78iMYXQ3C+0KdV60HfZVKA5ISoEomYZ14njJUSjmNp7cVlMp2gBWDYcMI2DUDGr0H5Ts6u3RKJSopAxbq/SWlnOSlRsXvXBlFHr9I13GbuBUVjaeHB3my+nLy4jUalsrNY6EF4t9J5lzQZhSEdIeFA+GX3hDxHZlzdwLqpspxKPUgktOLTynlRCFBAUzpaQ3lEV4kB+UL+PPduqN8sfwQDYet5oUGxehZswg+XvHcWi4QAj1XwI7JsPxdQk4OANkN9d+yUiop5WKS3ItPRAY7sBxKqSSIGcojJCgAb08P+tQpyvIBdahTPBefLv6NFiPWsunIhfh34OEBlZ+E5yM5nb85RE6CkZWte1XR2lKvXEtyHtR9W0Q+EZFvRaSviAQ4rFRKqSTLny0DXz8RyvinQrl26zadv9nEyzN2cP7Kjfg3ypCNw8V6wTPrIE9ZWDAAvqkDW8fD2qGaiFa5hOQEKANcB5YAgVhZJSo4pFRKqWRrUCoPy16qw3P1ijJv5x80GLqaKZuPEx2dwHNQeUrDU/OgwwT49wwseBlWvAeTWmmQUk6XnHtQB4wx79h+nykiE4GxQP0UL5VS6oFk8PHklSYlaVspP2/O3sP/ftnDjIhTfBDfcPPxZUuPuq7Z0pXTJecK6ryIhMRMGGMOArkSWF8p5STBubPcGW7+tG24+cFz9/Jv7OHmuy2EwZesV49l4JUBxBPE9tGQoxj8388anJRTJOcK6gVgmohEAruB8sBRh5RKKfXQYoabr18iD58tPcCkjcdYsPsM/2teijYV892/QUy29GNroVAtuH4JFr1mZaIo0QKafADZC6f+gah0K8kByhizU0QqAg2BssBKYKqDyqWUSiExw813DA3krdl76D99B9O2nqBVvuj7Vw4Mu3co+cK1YdNoWP2ZlduvxotWIlqfjKl3ACrdSk4TH8aYG8aYBcaYT4wx44wx/zmqYEqplFW+QDZmPVuDD9qWZf+Zy7y9/hofLdzPfzei4t/Iy9cKSM9HQOnWsOZTGBUG++ZqElrlcMkKUEqptM3TQ+haNYhfB9Shej4vvl5zhIbDVrNw95n4M6UDZM0H7cfB0wvBzx9mPAE/PAp//ZZqZVfpjwYopdKhHJl96VHOl5/7ViNbRh+enbKNJ7/bwvxdfzBq5eH4s6UXqgG9V0Ozz+CP7TCmOix9E67/m7oHoNIFTXWkVDoWEpSdef1q8MOm43y2+DfWHjqPAL5eHkzpFU5IUBzP43t6QdXeUKYtrHgXNnxlS0L7vpWEViTVj0O5J7cOUCLSCmgVHBzs7KIo5ZI6fb2RzUf/vmeeAa5HRdN+zIY786oWzs70PtXu3ThzLmjzFYR0uycJLc0/g7zlU6H0yt25dYAyxswD5oWGhvZydlmUckX2QScmW/rNqGiMsQJVw1K5eadVGQKzJ9Br754ktIOtlEmh3aHe/zQJrXooeg9KKQXczZY+oHEJpvcJZ1Czkmz4/QINh61m5IpD3IhKIJmsXRJaqvSyrqRGhkDEBE1Cqx6YBiil1B0x2dLDCuegT52irBhQhwalcjN02UGaDF/D6oN/JbyDDAHQ/FPosxZyl4L5/eHb+nBya6qUX7kXDVBKqXjl9c/A6K4hfN89DBHhqe+20HdyJH/8cy3hDR8pC08vgPbj4co5GN8QpjxmJaLVJLQqiTRAKaUSVbt4Lhb3r8XAxsX59cCfNBy2mrGrf+dmVBzZKGKIQLkO0G8rlOsIh5ZaQ3lMaA7HN8S/nVI2bt1JQimVcny9POlXvxhtKubn3Xn7+HjRAWZGnuL9NmWpVjTH/RvElyk9+hZMaHZ3WjOlq3joFZRSKlkCs2dk3FPWAInXb92my7ebeHHadv789/q9K8aXKd3TBzLnsdYp0w7afZv6B6HSBL2CUko9kAal8lAjOCejVx5m7Ooj/Lr/T15qVJwnqwXh5Rnru2/sTOmPlIP1X8K64XBwMdQeCNX6Wbn/lLLRKyil1APz8/bk5cYlWPJSbSoFBfDe/H20+mo9kcf/vn/lwDCoNcD66Z0B6r4Oz22BovWtzhOjw+Hg0tQ/COWyNEAppR5a4ZyZmNStCmO6VuafqzdpP2Yjr/y0kwtXbiS8YUAQdJ5iDYooHvDjY/BjZ/j7SOoUXLk0DVBKqRQhIjQrl5flL9ehT50i/LL9NPWHrmbypuPcjk5kaI7ghtB3IzR6z2oGHFUVlr8LN66kTuGVS9IApZRKUZl8vRjUrBSLXqxFqbxZeHP2HtqOXs+MrScSzpTu5WMNiNgvwuo8sW4YfBUKO6fr2FPplAYopZRDFMuTham9wvmyc0VO/H2VV3/ezWdLfuPxbzfFH6QAsuaFdl9bPf+yPGIloR3fGE5vS73CK5egvfiUUg4RV6Z0gBtJyZQOVmeKnr/CjinWsB7f1odK/wcN3rEyqSu3pwFKKeUQ8WZKx2qxCwkK4L02ZSiTzz/+nXh4QOUnrOHmV38Km8fCvjlQ5zUI6201Cyq3pU18SimHs8+U/lOfanzaoTzHzv9Hq5HrGDx3L5eu3Up4B37+0OQDeHaTdWW19H/WaL6HlqfOASin0CsopVSqCAkKuDNCb2ih7DQp/QifL/2N7zceY/6uM7zRvCRtK+VHEhqRN2cx6DoTDi6BJYNgSnso3swKXlcv3H0QODAslY5KOZIGKKWUU/hn9Ob9R8vSqUogb87ew8szdjJ1ywnea1OWUnmzxr+hCJRoCkXrwaYxsOYzGGULSMZYqZSemqtByg1ogFJKOVXZ/P7M6ludnyJP8vGiA7QcuY6nqhWif6NiZPXzjn/DH9rGnYw26hqMb3R3WpPRplkaoJRSTufhIXSqUpAmZR7hsyW/MWHDUebt+oP/NS9Fm4r54m72sw86J7fAxJZw25a5ImdJaDsa8oekzgEoh9BOEkopl5Etow8ftC3HnOdqkM/fj/7Td9Dpm038dvZywhsGhsHT86H+W1D7Fbj2t9UtffZzcPlc6hRepTgNUEopl1O+QDZ+ebYGH7Urx8Fzl2k+Yi1D5u/j8vUEevsFhllZ0eu/Cc9HQvUXYNd0GBkC60dA1M3UOwCVIjRAKaVckoeH0CWsICsH1KVjaCDj1x+lwdDVzNlxGpNY6iO/rND4fatbelB1WPYWjKmm2dLTGA1QSimXFpDJh4/aleOXZ2vwiL8fL07bQZdvN3HwXCLNfgA5g6HrDHj8J2v6x8dgSke48LtjC61ShAYopVSaUDHQavb7oG1Z9p+5TPMv1/Lhwv1cuRGV+MbFG9uypb8PxzdY2dKXvgXX/3V8wdUD0wCllEozPD2ErlWDWDmwLu0rF+CbNUdoMHQV83b+QeSxv5OQLf0F6/5U+U6wYYR1f2r7FIiOTt0DUUmi3cyVUmlO9kw+fNKhPJ3CAnlr9h6en7odD1tPdB8vD6b0DL+TteI+WfLAo6MgtDssehXmPAsR46HZp1AgNPUOQiVKA5RSKk2KnS09ZkzE67eSmC29QIg1pMeu6bD8HRjXACo8Dg3fsYb5UE6nAUoplSbFzpb++LebuBFlNdXlyOTDe23K0rzcIwnn9vPwgIpdoFRLWPM5bBwF++daz1KF93X0IahE6D0opVSaFxIUwI+9wnmlSQk+bFuWPFn9eO7HbTwxfgu//5WEYeN9s0Cjd+G5zVCopnVFNTqc7BciHF94FS+9glJKuQX7bOkdQwOZsvkEny/9jaZfrKFnrSI8Xz+YjD6JfOTlKAqPT7eG8Vj8OuV3vw/XNkGFLvDPMc2Unso0QCml3I6XpwdPVS9E83J5+XjRAcas+p0520/zVsvSNC2bSLMfQLGGUHgDh6e+RvDxaXB4GSDg5QtPzdMglUo0QCml3FauLL4M7ViBzrbefn2nbKN28Vy827oMhXNmin/DCc3h+HqC75lpIOq6ZkpPRXoPSinl9qoUys7852vyTqvSbD9+kSbD1/D5kt+4dvN23Bt0WwiDL7Gq7hyrp59XBhAP6wWQr5I1X4OTQ6W5ACUiHiLygYiMFJGnnF0epVTa4OXpQbcahVkxsA4ty+flq5WHaThsNUv2nk04t19gmDUAYv03odtiaPsN/HvGupL65Rm4fDb1DiKdSdUAJSLficifIrIn1vymIvKbiBwWkdcT2U0boABwCzjlqLIqpdxT7ix+DOtUkem9w8ns60WfHyLpNnErx87/F/9GgWFQawAUrAoVOlnZKGq+BHt+hpGhmi3dQVL7Cmoi0NR+hoh4AqOAZkBpoIuIlBaRciIyP9YrN1AC2GCMeRnQBxWUUg+kapEczH+hJm+1LE3EsYs0Hr6GYUsTaPaz55sZGg6OlS29Ohxe7vBypyeSaNr6lH5DkULAfGNMWdt0NWCwMaaJbXoQgDHmo3i2/z/gpjFmhohMN8Z0ime93kBvgDx58oRMmzYtxY/Fma5cuULmzJmdXQyXpnWUMK2fu/65Hs20326y6cxtcmYQupbyoWIuT/77778k1VH2CxEEHx5HxmtnOJ+jKoeDu3M9Q/rIRpES51G9evUijTH35ZlyhQDVAWhqjOlpm34CqGqM6RfP9hmBkcBV4IAxZlRi7xkaGmoiItzrgbtVq1ZRt25dZxfDpWkdJUzr534bf7/A23P2cOjPK9QvmZumuS/TsXn9pG0cdcPKRLHmc4iOshLT1nwJfBLoLegGUuI8EpE4A1Sa62ZujLkK9HB2OZRS7qda0RwsfLEWE9cf44vlB1lz8DanvQ8SXiQ72078Q3iRHPEnofXyhVovQ4XOsOxtWPMZ7JhqDZxYpi0k9uyVuo8r9OI7DQTaTRewzVNKqVTn7elBr9pFWDGgLiG5PflyxSEe/3Yzny/5ja7jNsU/nEeMrPmg/TjotggyBMDMbjCpFZzbmzoH4EZc4QpqK1BMRApjBabOwOPOLZJSKj2LnSk95kZIkjOlg9V5os9qiJwAvw6BsbWgSk+oN8gKXCpRqRqgRGQqUBfIKSKngHeMMeNFpB+wBPAEvjPG6FcNpZTTxASdVatWkaVwBbqO28SNW9EYwNtTeK5eMM/UKYqft2fCO/LwtIJSmXZWkNr6LeyZCQ3ehkpPWMtVvFI1QBljusQzfyGQ4o9ki0groFVwcHCi6yqlVFxCggKY0jOcTUcuUCx3Zubu/IMvlh/i522neKdlGRqWzpP4TjJmh5bDIORpa5DEeS9CxARo/pnm9UuAK9yDchhjzDxjTG9/f39nF0UplYaFBAXwXL1gGpd5hK8er8yUnlXx9fKk5/cRdJ+4leMXEnjI117e8ta9qfbj4co5KxvF5A6w/F04ucWxB5EGuXWAUkopR6gRnJOFL9TijeYl2XzkAo2S85CvCJTrAP0ioHwnK1P6umEwoRkcW+/4wqchrtBJQiml0hwfLw961y5K6wr5+XDhfkb8ephZ20/zdsvSNCqdJ/4hPWyZ0u8THQUTm9+d1kzpegWllFIP4xF/P0Z0qcTUXuFk9PGkty2339H4cvvZMqUz+JJdpnRP8PSBLPmsdUq0gDaJ5iBwexqglFIqBVQrmoMFL9TizRaliDhmDenx2ZIDXL0ZFf9GdzKl/w+eXgAv7oAG78CRVTCqqtXz72YS72+5IQ1QSimVQrw9PehZqwi/DqhDi/J5GbXydxoNW8PiPWfiH9IjJlN6YNjdbBTPR0Dp1lY2iq/CYM8sSOW0dK7ArQOUiLQSkW8uXbrk7KIopdKR3Fn9GN6pIjP6VCOLnxfPTN7Gk99t4chfV5K2gzvZKBZDxvSbjcKtA5R2M1dKOVNYYWsk37dblmbHiX9o8sUaPlmcSLOfvaBq0Hs1tBgK5/bA2JqwYABc/Tvxbd2AWwcopZRyNi9PD7rXtEbybV0hP2NW/U6DoatZsCuBZj97Mdkont8GoT0g4jsYWRm2fAu3kxjo0igNUEoplQpyZ/FjaMcKzHymGgEZfXjux2383/jNzN1xmlErDyeehDZjdmjxOTyzDvKUhYUD4etacGR16hyAE+hzUEoplYpCC2Vnbr8aTNl8gk8WH2D94QsI4OvlwZRe4fEP5xEjTxl4ah7snwtL3oTvW0OpVtD4AwgISpVjSC0aoJRSKhXFzpQOVrb061HJyJQuAqXbQLHGsOErKxPFwaVuN0iiBiillEpF9kEn8vhFuo7bxM2oaIyxAlW1Ijl4t00ZiufJkvjOvDNAnVeg4uN2gyT+CI3eg7Lt0/wgiW59D0q7mSulXFlMpvQBjUsw45lqvP9oWfad+ZfmX67lgwX7uHIjiZ0g/PNDh/FWt/RMOeHnHvBdU/hjh5WEdu3QNJmM1q2voIwx84B5oaGhvZxdFqWUiktIUMCd+05VCmWnedlH+GzJb4xbd5Q5O/7gfy1K0bpCvvhz+9kLqga9VsL2ybDiPfimjpVGCQOevlbWijQ0vIdbByillEprcmT25eP25ekcVpC35+zhxWk7mLL5BO+1KUPJR7ImvoNJre5NRmtsGdajrlnDe8RIA8loNUAppZQLqhiYjV+ercH0rSf5dMkBWoxYx1PVCtG/UTGy+nnHv6F90Dm5BSa1hKgb1nTWAtDqSyjW0LGFTyFufQ9KKaXSMk8P4fGqBVk5oC6dqgQyYcNR6n++mlnbTiXtId/AMHhqPtR/Gxq9D14+MKU9/NgJLvzu+AN4SBqglFLKxQVk8uHDtuWY81wN8gdk4OUZO+n49Ub2/fFv4hsHhkHtAVYX9Gc3QcN34dg6K1v60rfgehL24SQaoJRSKo0oXyAbv/StzsftynH4zyu0HLmWwXP3cunaraTtwMsXava30iaV7wgbRsBXobB9CkRHO7TsD0IDlFJKpSEeHkLnsIKsHFiXrlWDmLTxGA2GruKniJNERydxSI4seeDR0dDzV/APhDnPwviGcCrCsYVPJg1QSimVBmXL6MP7j5ZlXr+aBGbPyCszd9Fh7Ab2nE7Gc58FQqxRfR8dC5dOwbgGMKsP/HvGcQVPBrcOUPqgrlLK3ZXN78/Pz1Tn0w7lOX7hKq2/Wsdbs/dw6WoSm/08PKBiF3g+0kqTtHeW1ey3dtjd3n9O4tYBSseDUkqlBx4eQsfQQH4dUJcnwoOYsvk49YauYsbWk0Qc+ztp2dJ9s0DDwVZHisK1YcW7VkeKAwudNpqvPgellFJuwj+jN++2KUvHKoG8M2cvr/68CxEQwMfLgyk9k5AtPUdR6DIVDq+AxYNgWhcoWh+afAS5S6bKccTQAKWUUm4kdrb0mCS0128lI1s6QHAD6Lseto6DlR/BmOoQ3hfqDgLfzA48grs0QCmllBu5L1v6t5u4ERWNAbL4evJGi9J0Cg3EwyMJuf08va2gVO4xq8lv41ew9xdo9imUbOHwbOlufQ9KKaXSs5CgAKb0CmdgkxIM61iBUnn9GTRrN21Hr2fnyX+SvqNMOaH1SOi+FPyywfSuMLUL7JtLweMzHZYpXa+glFLKjdlnS29bKT9zdvzBBwv38+jo9XSuEsgrTUqSPZNP0nZWsCr0WQ2bx8KKIXBwEYUBJv1kjfKbwpnSNUAppVQ6ISI8Wik/DUrl5ovlh5i44RiL9pxlYOMSdAkriGdizX4Tmt+bKR2rAwZR1x2SKV0DlFJKpTNZ/Lx5q2VpOoYG8vacPbw5ew/Tt57kvTZlqFQwgV5+92VKb0101A08vBwz1pTeg1JKqXSqxCNZmNY7nC87V+TPy9dpO3oDr87cyYUrSXhANzAMnprLscJdHTYQolsHKM0koZRSCRMR2lTMz4oBdelduwiztp2m3uer+H7jMW4nltsvMIwTQR0cNkqvWwcozSShlFJJk9nXizeal2LRi7Uom9+ft+fspdXIdUQe/zvxjR3ErQOUUkqp5CmWJwtTelblq8cr8fd/N2k/ZiMDf9rJ+aQ0+6UwDVBKKaXuISK0LJ+PFQPq8EydoszZYTX7TVx/lKjbqTdulAYopZRSccrk68XrzUqy6MXaVAzMxuB5+2g5ch1bj6VOs58GKKWUUgkKzp2Z77uHMaZrZf69dovHxm7k5ek7WL7/HPN/v5l4pvQHpM9BKaWUSpSI0KxcXuqUyMWolYf5evURZm0/DcD8Y5uSlik9mTRAKaWUSpLYmdJjJDtTehJpgFJKKZUk92VKH7eJm7ei8fFO4lhTyaT3oJRSSiVbSFAAU3qG066Yt0OCE+gVlFJKqQcUEhTA5aI+DglOoFdQSimlXJQGKKWUUi7JrQOUJotVSqm0y60DlCaLVUqptMutA5RSSqm0SwOUUkopl6QBSimllEsSYxIZMdENiMhfwHFnlyOF5QTOO7sQLk7rKGFaP4nTOkpcStRRkDEmV+yZ6SJAuSMRiTDGhDq7HK5M6yhhWj+J0zpKnCPrSJv4lFJKuSQNUEoppVySBqi06xtnFyAN0DpKmNZP4rSOEuewOtJ7UEoppVySXkEppZRySRqgXJCIBIrIShHZJyJ7ReRF2/zsIrJMRA7ZfgbY5ouIjBCRwyKyS0QqO/cIUo+IeIrIdhGZb5suLCKbbXUxXUR8bPN9bdOHbcsLObXgqUREsonITBE5ICL7RaSankf3EpGXbP9ne0Rkqoj4pffzSES+E5E/RWSP3bxknzci8pRt/UMi8lRyy6EByjVFAQOMMaWBcOA5ESkNvA6sMMYUA1bYpgGaAcVsr97AmNQvstO8COy3m/4EGG6MCQYuAj1s83sAF23zh9vWSw++BBYbY0oCFbDqSs8jGxHJD7wAhBpjygKeQGf0PJoINI01L1nnjYhkB94BqgJhwDsxQS3JjDH6cvEXMAdoBPwG5LXNywv8Zvv9a6CL3fp31nPnF1DA9o9SH5gPCNYDg1625dWAJbbflwDVbL972dYTZx+Dg+vHHzga+zj1PLqnLvIDJ4HstvNiPtBEzyMDUAjY86DnDdAF+Npu/j3rJeWlV1AuztaEUAnYDOQxxpyxLToL5LH9HvNPFuOUbZ67+wJ4FYi2TecA/jHGRNmm7evhTh3Zll+yre/OCgN/ARNszaDjRCQTeh7dYYw5DXwOnADOYJ0Xkeh5FJfknjcPfT5pgHJhIpIZ+Bnob4z5136Zsb6SpNsumCLSEvjTGBPp7LK4MC+gMjDGGFMJ+I+7zTKAnke2Jqc2WME8H5CJ+5u2VCypdd5ogHJRIuKNFZymGGNm2WafE5G8tuV5gT9t808DgXabF7DNc2c1gNYicgyYhtXM9yWQTUS8bOvY18OdOrIt9wcupGaBneAUcMoYs9k2PRMrYOl5dFdD4Kgx5i9jzC1gFta5pefR/ZJ73jz0+aQBygWJiADjgf3GmGF2i+YCMT1hnsK6NxUz/0lbb5pw4JLdpbhbMsYMMsYUMMYUwrqp/asxpiuwEuhgWy12HcXUXQfb+m595WCMOQucFJEStlkNgH3oeWTvBBAuIhlt/3cxdaTn0f2Se94sARqLSIDtSrWxbV7SOftGnL7ivDlZE+vyeReww/ZqjtXWvQI4BCwHstvWF2AU8DuwG6tHktOPIxXrqy4w3/Z7EWALcBj4CfC1zfezTR+2LS/i7HKnUt1UBCJs59JsIEDPo/vq6F3gALAH+AHwTe/nETAV657cLawr8R4Pct4A3W11dRjoltxyaCYJpZRSLkmb+JRSSrkkDVBKKaVckgYopZRSLkkDlFJKKZekAUoppZRL0gCllFLKJWmAUkop5ZI0QCnl4kSkkIhcE5EddvPyiMiPInJERCJFZKOItE1kPytFpEmsef1FZIyIZBCRHSJyU0RyOuhQlEoWDVBKpQ2/G2Mqwp1UWLOBNcaYIsaYEKx0TwUS2cdU23r2OgNTjTHXbPv/IyULrdTD0ACllAOIyE8i8pWIrBOR4yJSU0R+EJGDIjI+jvVri8jrIvJkEnZfH7hpjBkbM8MYc9wYM9Juf/8nIltsV0Vfi4gnVrLYFnajwxbCyuC99iEPVymH0ACllGOUA44YY2piDdQ2HmvsqtJYQcJXRJ4WkVARqY01CN7HWAO9JaYMsC2+hSJSCugE1LBdFd0Guhpj/sbKH9fMtmpnYIbRfGfKRWmAUiqFiYgfkA1rQEWwEv+ON8acMdYgd7eBm1jDNIRjJdJ84CAhIqNEZKeIbLXNagCEAFtt960aYCU/hXub+TrbppVySV6Jr6KUSqYywDZjTMxIvxWAMQAiUgDrPk95rEzPHYEJwLci8jpJGy9nL9A+ZsIY85ytY0OEbZYAk4wxg+LYdg4wXEQqAxmNDvioXJheQSmV8soBO+2my2MNdwFWsNpljNmJNYzKBGC4MWa1MeZjY8wPSdj/r4CfiPS1m5fR7vcVQAcRyQ0gItlFJAjAGHMFa6yj79CrJ+XiNEAplfLKYQWfmOa+DMaYi7Zl9sHqItaglJG2ThLTkrJz2z2jR4E6InJURLYAk4DXbMv3AW8CS0VkF7CMe+9tTcUKlBqglEvT8aCUcgIRKQO8DFwwxrxqm/e6raNE7HULYQ3IWDYVynUMa8C5845+L6USo1dQSqUyEfEH3gD6AoVFpGoim9wG/O0f1HVAmTLY9u8NRCeyulKpQq+glHIBIlIO+BAYaYxZ6uzyKOUKNEAppZRySdrEp5RSyiVpgFJKKeWSNEAppZRySRqglFJKuSQNUEoppVySBiillFIuSQOUUkopl6QBSimllEvSAKWUUsol/T+0Q2Fv1lGrZwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "params = [\n", " \"mastercode_with_gm2.in\",\n", "]\n", "pss = [ \n", " (1000022,1000022),\n", " ]\n", "for pa,pb in pss:\n", " for param in params:\n", " i = hepi.Input(hepi.Order.NLO,13000,pa,pb,param,\"cteq6l1\",\"cteq66\",1., 1.,model=\"/opt/MG5_aMC_v2_7_3/models/EWKino_NLO_UFO\")\n", " li = [i]\n", " li = hepi.mass_scan([i],pa, np.linspace(100,1000,7+8))\n", " mg_dl = mg.run(li,skip=False,madstr=True)\n", " hepi.mass_plot(mg_dl,\"LO\",pa,logy=True)\n", " hepi.mass_plot(mg_dl,\"NLO\",pa,logy=True)\n", " hepi.title(plt.gca(),li[0],scenario=\"mastercode\")" ] }, { "cell_type": "code", "execution_count": null, "id": "bde9afca", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "19e4273a", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }