{ "cells": [ { "cell_type": "markdown", "id": "1b8ecb5f", "metadata": {}, "source": [ "# PyX" ] }, { "cell_type": "code", "execution_count": 1, "id": "1b09c860", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.0.5.16\n" ] } ], "source": [ "from pyfeyn2.feynmandiagram import FeynmanDiagram, Leg, Propagator, Vertex\n", "from pyfeyn2.render.pyx.pyxrender import PyxRender\n", "import pyfeyn2\n", "print(pyfeyn2.__version__)" ] }, { "cell_type": "code", "execution_count": 2, "id": "168c2c08", "metadata": {}, "outputs": [], "source": [ "fd = FeynmanDiagram()\n", "v1 = Vertex(\"v1\").with_xy(-1, 0)\n", "v2 = Vertex(\"v2\").with_xy(1, 0)\n", "p1 = Propagator(\"p1\").connect(v1, v2).with_type(\"photon\")\n", "l1 = Leg(\"l1\").with_target(v1).with_xy(-2, 1).with_type(\"photon\").with_incoming().set_label(\"$g_1$\")\n", "l2 = Leg(\"l2\").with_target(v1).with_xy(-2, -1).with_type(\"photon\").with_incoming().set_label(\"$g_2$\")\n", "l3 = Leg(\"l3\").with_target(v2).with_xy(2, 1).with_type(\"photon\").with_outgoing().set_label(\"$g_3$\")\n", "l4 = Leg(\"l4\").with_target(v2).with_xy(2, -1).with_type(\"photon\").with_outgoing().set_label(\"$g_4$\")\n", "p1.with_source(v1)\n", "p1.with_target(v2)\n", "fd.propagators.append(p1)\n", "fd.vertices.extend([v1, v2])\n", "fd.legs.extend([l1, l2,l3,l4 ])" ] }, { "cell_type": "code", "execution_count": 3, "id": "c094eb1c", "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAACkCAQAAACwLhTLAAAAAmJLR0QA/4ePzL8AAAAJcEhZcwAAAMgAAADIAGP6560AAAAHdElNRQfmDAsPIQ5+Q0fmAAAKeHpUWHRSYXcgcHJvZmlsZSB0eXBlIGljYwAAWIWdl22SZKkNRf+zCi+BTwktBwSK8P434ENWd0+33TNjOyuIzHoPhJCu7hXpn+7pH3zqUEn5fVbJPz7167ccudq1jtq115rHHDZWzX/2SVKkadPcy8gjd//TmX/xCXZ9Hv1w57R6/h9DH4/+x/lLugxt0r758u0E6omDZa3aP/8XnV8v6lQlQvn78/XNTulSZf/xfPfvzxPh/ITx63+fPxboz8+P/2Ho5+eRfzbUycyXqzV/7TCzY+j3z/9kfvr1zN8/tfbyDiwmwvtJ+puECMdV4Y2MmrV9h0a33lJvTCJKbxrLXMbvo/x3ptN/2v5vTf/6+dv06zv6/JYlPh0/yJqxkYkKb9j+efTXcWi15VYakP1diUQbD8zlu0eliPvf1dL3z+/mSaz6OVqb8RWHZr+fWM3e99b5mVfmWf8+72Oo9m/IjfmJxRYPED/Ikvxi8Uek8jP4FsUDI8MwVC6m2isLBkVL0jJ1k9v+WtlZ9HbqLBo8GHg3WPOwJ/MRDil5R1N9RQc8CdrEg4mBdxLDgGHAMLAwsHi4MLDrOySDNc4aZ41vDD3mOCw6GGBevvy+++M1TMPY5OX9KeOQmsYwRuRSB4P3DY9Km4zLUXkIsRWyXnC/YKMIi4V3yju8LhMjeFyMOXhboNaCp2UXDG1+4GJxvg/fh+/L9+U7WBCL4mwMh4Y741AvwghCO8lUYXA0qpnBS3avykNlIdmr8+ZqTCTHdWFks5gNq29yMnJ9OSIEFei0l/6WN+AVklXyo9rGLtQbI3KDd5rwTvFJL4Djf+N/jDcC3zb/u+Z2Goaw3K7nFka2hcJpmfphHApr594nCEAXSHfH447BPp36XqCCd3javafcDxOIyYNJjwvUTh7F8yAboy2gA9zHzIOjD6AygMjAq7EYG+lxxhkJbPGDNH/+OKJUzY/IBU+E7ImsLLrBnmexk2VFFn84LFluo9DgnKwpK5hQdtd24IzIVD4Y7VnZWakxJdC6eX4gLjbVmFDrBr+RJ1Uwu+Q5VgLMN084ZOLuXAtg8z+L5tU8AaMBXgN4xjGNjUx6NrVsk98g3gi4eaRs7GIsWKXkxbEWni0gsTjSomwWEFhkaBGLhZqseHnmD0Ld0MWGk7ZQtJu620ze+5UP3wR+k0EvQLCu7EDBh2cH3Q62fGn2V2YA1zF63l9Fsk9/pbbyIS6HiQfIH2fC4TfxuMDhgr5L9i7Huhr52qYcJV9CcO+lLPEoOH8A84AaAlQHsYrdUOPIcV95E6VKBjqMK5xfcdk2bvP86FtYKOTE4LsHfHtKmV7KIlpupdzJ4bRQV6X2Uar0QumUulqpzriQ+SP0ykDXCuIIATAWmPYBEQxKU0qn8Ho3RHqVPnfp60AOlz0hh1LLaHRCQwqyAVnsVMY+hVO9ait0CEVYLOJFZhTZFUd5Fqso1KC9FJVBr2FF1y1gq2homQVDFHqZvJxzlbkCYuc3Cz+Uw5FMdjFOahvonkNj0suqqyxCs1Sho1uARiqLgOJ42W2XzTE3Bjee7LPKYyAgUHzwrbs48XH34gT4QFqHKj76KMwSHUsrB2O3SLl4d4nJtV4ugLrXSpCNaLeE8JvnsaPEXfVDpcSewqvAPIE6SAOyI1UQ4OTQbL+Ipt/Kqlqr1jpGrZOfK2o9B81ZFd6qcFVt1mvzmmqLx5ZRez90Eo7G7drPetVVB5OHMJD64YxAyetTc8bU17xVuZP84pF2q6pUGQb0OOp26mxB8wdsFo6cXu2JLUYJPKJ7KmxC8eAgbcxio0X6oeOARGrdTaBlq5uJIKI+avNm1eVWx6AfhTO9HuJyVOph43PBJaC53VPFMzhcKzVTOSBcvmpYqcFRImCuNmAvim9RvWdTB0C5kz5CVDbfURu+pValtWob3u+Nma1Bzk2jtT1bI2UdX+mRWrfb+pl0Mq0N+HlM+jOvbcShODQ1UYK/bpNriEVv+kTDvOnRNktvNCBtTm/T52tWPkkyNrLNwQO6w8zSnhpHRVmiceK2BViu1fadZFQbbV9zjuS3tVNro1oaOG0wTLso0mXTiyLBJIn8lBZMoFlqcSvK2KjZ/ijykQ+hBYVCRS8HpRd/UCpcr3sQUCUe7KSHrhaJ6shhpx3tc3Uq/JEGUkZDDSmPc+nSa389oazdJZA2oqS6gR0Sh2BNJLtTyH1Cj0blmBDTZZ1OhrxoX3o6jvQN/Dfx3hjeeE39dZLafa8OpDqzUj9GMo73SxNw5Xag8KWVtMrEssd5Qg9hKxex/ageqkAKoYNBYQ5AMCqXGlCnA1ob5BFhXYOAjd6xSmPZz6bK5hjKQZ1qgVcFaZVlgy55EIyhVBIqnsYEglPPmL6HwTImBuEheVnHYtlajBhjE7VtjIvNxoDE/Mg4eHt0pnHcBtQ0rvi4+wwoHwUvAwGg1cIJLqwIG844/MubBY3iWCWi1bjkoOCPswV0SUNb+ku6denXQA9bGUV+VYTflKBQ5YKsixoYZg6FLaizzOvyLjVitsTiIWVy9KBHUNnsvBffEfip4otrK+J+6DHONqFW5cqW66CBiAdHk4DTaccQevqWS24AfLGh9AgkmGpeOEIH2YgE9QdC+9fd0skSZEPnrsQmvXOpwOwSXD9pgnQ3BAah4Lo+mWx1qU3ahgtrcbEksTQ5XeF33dQRvKo+MeRPVbjfUEP6+tcLBV4mwA50MF3j0mV1LrtrvpZiolGz+IFEMkwHAUeHEjRNqhT9PBOsz34pdhaNtemOXnQrgeGW9c5kMbE4pxhkcKdB2mb4GndSlmkuXxOpn8Rw7vDpAmPw7EBdhzUnYt5Pcu6MhmwafTO9G+0a3QbSQvNZ1kyGfEDay9DyVywGl0A59FSToqNOxggbbp8yJL1GB2UE04iDze42N47VnvAum4UDgmnrAGq4fq8wZNCcOR5qB4ShQobu2V0XtBwOui2CFk9ob89MdAiKtAr0zjBZEDSFz0ApO1VFmVOAc43FXrQqBGCBGVB2F16tiZBM2uMFwTLFaGZ8LUQfRVmbMtvXkHRfTid4Or0IWn7RjovsP/zi0X53O0qSrmulTRuyy0GwOorvMH0j9utyQurUqOTS9piL/gy/1TbEBujmxhtKm/I+3Gbgo20shqX32gNLlx8PZ2W77dfw7ENrywmgcTgtUH6UNIKmklYyXzoKURqHlmCZQPWQBIikHS4DtP3QrY++ORlo6Fz9nRtHfw0J+GjH53ZHP9jLaFCmE4vksIVvbrFYcg7iKJbDZwiH+H2326YeHIDbzMmbtq05h6ENbXG4LR3Y/iA3iTgafkBE/Z5xiNYYRw4sjj3icKYgixdsCg0xeSddZ8Um9jS/3EJ8LtqvnA4zkHA/tDwnaA9icbNBLvPmcee64/Q3Axk7GyfbhbsuMnJ7OFUIzedzxSRd+OICACSRNmA7PRbYPyQUUl0X0oRcNvGGWi997z3mdAnzktcbKF84ffSYie57RKFfKBH0MoSkWEBJ0REQdAe2hnvPDZET8pJGozmZMwEdrQ4loAGzpFi08ls1yCeFMomgxaFGbt9xj8ORlG1E+hftkQTIS62KtQAAFVJJREFUeNrtnbuO60xyx388WCwcGeAB7AfgCR3qC/wAXGCijSw/gr7AD6ADZ2PAgM4jaB5BY2BDL6ABHHpgjIDFJo4kZw6ODWmNY8PCekblgBRFSrxUX0jNpasSXdhNsvlndXV1978ioUuiERPGxABs2LACxiSs5KfOwkE+oEQxa2JWPAAjEhIANtxzL6vO4tKqTHjKPy6YkpT+WSKMhaBBz5UpwqL0fcS0wNGSSUfpxj8SZmwRhDUT4ov/xwiza9980NeoLBHSi18TpqwRhDWzS0QVx9X+mDDPPy4uq86PSQmQDFqrLBFGDf+NWSIIW+blXrd0xMUPaVFkVl8kP26GML32zQd9jcqMVqeuZPLml9CtfjnCsdWw5sfOkSYLGvRjK1M6e1DiwjFcVk3fp7PRTsqGn+WLfJVdx7hoBGyuPbYL8iplBfkou1FkJ1/5wlc2pNV/omoQKErlQXPOKGEdgkBBmiTaEkukPHZUDQydWUkdIIExoD02yMeTe4jGukPPI5WfdMUuJM1OGyRIrazgvEPWStQ9e1NTKGHNRr5c+76DvFaJYrbs+NI5IqkROys5IdjIIC0iO+6IUXbdVbGH5J3fm4huosfo1nfTBLmUgVr6ngwn5mIRdZpQmcH0EMe65cCB7+z5ziMv3Fw7svZedciWZo1V5NrmVE92p2qsb8GB5/zzngMSINkTSAZtaSYIc4tyxgVShLXnZjoU3x6R07egXiEycEsTs0XaJqXr1dyXHAPfPPocf0XEvxTf/gz44+nP6CbaR989nu0jS0NLRzfRPtpH++gl+hHd+Dud7LjDxp80RH6CsO2a/zao7+xdZU9hgzlw4Blhf2378h60qaW54cCtkH86+OzK7dBiepI5Xpek8YwcvRtBuPRvCJDstaV5PP1eNgiezmqBF7ODY7zayLxhikbghgv/hgDJXluaW16KfmmP8Oj1rAnGIDc7eIbVGKrj9EVAiTUXACRAcqCWzlwl7+ddIl1bG2quVHmo5Qiqtc4DUvpW03EQIDlIS7Pgxa8nmddrHKExGXFPibkTv2skD6eP0YJfAn/jtf4gR2lp6eg22vNronKsw5fIAw8kkcm42wDvazzbyHw24Xv+lh6oiZQRrORALS3wwsHvvJyQbxxcGhyvPnBiVrG63gUHnnlm3+DfBEgO1NL56PulhzMbTS32VK3VhdeGIAiQ7LWl+VEJDUnZ4/R2PiNzpj3M0PhaXXjtnCsBkr22NEIxEmdBT5OMJk6fdnjTwwrJ6mRhdEuEyG/9O9hBWlv6hf+Wv84//xr4t14u4R6YKo9VYXyE56i+IPCj/E5yOHet2XPIHPHL/4L6amlueOaZNY/sjwOgHq7AIICos5I9LNnN5T8BokV0AP6heFuzl+VP5JN8kkg+ySf5VP0viLE0tLT8Vn7B3/Mf/AW/k0/y5/2c3GQJhmLvjcs+iko9I8Zk+79hxTfZRd/5U36J8H/8Tv6yn8YIAmDe0lHMtHhWO+5d49FRwpqdfFYcqjC6ztOIjJnnBEUnXfucKw/qVxnlTBTl5zVr4vlR1rlANbWoqcohRF7iXxOemJGSCCQs8DxbHtSnskQyGilGpMwKKj4FNU9jnSnCk+K4zgPGWO60IS3xr53RAWZriq7d8EEbnlzN+h2SEkfk3M5eska6S3ZXM8dwJYdQokpt5F9j2UdQNqgPJaUhCk3CvCCXMia81dBXaSC5RUxMNXGJ2HLSQmy5DpB8rUpCy8RI9Qkb19vZdXf9bdRtVwja0s4TK/yKoNdROt0qJnrix1Ipxbikq4oZym67ncby4ujGriHoa1CWKPrGCj2uCpYaolzNpXWOtouBTCPZr82lBb2e6kcQFVOkQUpnr9tVhXR5fOZvipDTEzhFuYL2qYYO22nQM2932Ijp7B2xr4CYSeHmTo2GQBabhIIOqxgG6SrjiBb7yrbTyLX+2RYMOF7Ak0WISBUMCHpNZYFxXqOKkWroM7uDf12nuAyZxkxY5F/mdot6Q7f9+tWejKxII2I5RdJVfTaxFAskpKX4/bo9BUlrnZ5ZhYL2oy77UUveZZZXLs0xtKRzIrmr6rrp97lbojq7+aCgQyszHN0rxiVgHrVzuU3n4rQoZkbCiBUbdqq0jIpFSu5L3YL0LQbLydrrSUmJcwyt+Nb55N/euxd0sGelXE7mV63o8x3emCwt7hfPBAVBepEoZTl8mgTbJCO2MiZ2X6EcZBiRB1YkkWWyEFsZGpJT+trFE6QPuUO/s9CTDArJaELCgzoDWZCri9yxIR3WTg5rJccEG/nW5BvY5a+xlQGHN9dxloO4yfAD0iGt5BS/xPtBBpB8B/aA/uRgVjIa8RRs5FuUoe3kcFayP8aMIL2K7BySz1nIQFYyTCO+ZRn26Q1lJafAXQDk2xTZcEc8lD85iJXMvZHPAZJvVYYcCQxjJTPi/QDINyuyMibBt5ZhrOSaJCy1eNsSpSxZyU/9n+kXA9zMhMTXUotoRAJsXFdtfgyJRiTs2PloLXmINoyidIDp4AFW3XnI303KrEIHuPSd7uS9KaNiU4qQsdY57nayza9tqr133K7TiFHKmDExkJFvroAxyTCdyFuVfEC54gEYkZAAsOHefl/AYCHz3t9W6502pS2Y2Zaikl1kiTAmyfgqvV1r6nPfJKNsE5Sn2mKTe2VKZX9hhYpvabtSfJgdAT1Xb868VjRhaZ/4ZXkmCP+cf1n4ePBM8vOtfcCSUbFx1MsjZMYRTjrunSU1zlKF88yCunQYSoi+qx9j7H8wKrHMNPigpAgZB9EWD4RXjBGEBU8IW1fLS8yabC+n4AGUzBC2LFij5Jurh2Rxr0fKHCWDU6nsADvwe63cvNuuMAy1NBe/Qfgf4uLxO1Fe5XVMiit2hDizYx2MENeHSIqwZSQQ84QK4sxo5aow47krlZu6trXiHD1Xb9BtF8y9nQxDxOwR/q7yyBwsGzPOc1U7NHv1ek7wtK7v6XQ9WogzoRO6JmygRZkRvfOC9lv5SPs4SlwyGs7/zLNKKt+twxMkCNvTS5BDyto/ZUkF0jzhsPX0PP+gDuIa0jyh4l0quZ1YYzE2MLrjXis3fVdVLBrE/AHh95VfrAZReen5+VW68HFc0su45Z+8TKeqI0Yx7J8UVN75sQv6Tu/aa+UdHL6lcfXCIDluZiMvQWQ1jDi3kfWwMqhveXnP9ll663K06voE5hgxn6m9eDUvszVqeq285Y0iLfGvGfmB+Rtd8afqgKWsrTbWVgcsVW212Sbtc5nXzXzp8hHazLWU0sI0DnoY03NssseqmyBZ8l+25vxrebjm8rFbdrb1j9e2s20KJtuls2pKp6oJWWe0eU4R4WVjRPgNQ7JuDuFoGy2oUoUc5nV2TZl76qxUIwGyJYgaPDi7eY8mRnddyNpp3mxamjerAJMnjKlQDc/ea+VZF7NkxoxlMaG1tc0ulb/7L/VgsQFRMxGTDcF/C8Ct5j2ahyiakLXdS1opPy8lG1wwy5e+vOUg0MV6FPfUkBOk8bEbg6iNE9YGRG12yXzeo43CXplny8carPHQa7B6rTw/RcqEcaO7PGLGjBkTTePlo8K0oSbDN7h9CGAKImK2zd6bOT97K8BVOSi15M7EpEyYMW/27UkZMxmCzrv3E3Scfnb2w6I1yV2C0GK7dGkjS8e3UsSbgqgD4MZWtz2yqKO37xqbV7z7o145H9F1Tz5B2DLN39FF4bk0LJ9iitDispuBqMvSmIKoCyQsMHhhuhas6II8zcMq4mICN/PuZ4xJ89F2r6Hwzmu+6skv1quUPJea5VP8HuG/OkCk7rq7H6pJ193dlZqFT7rGy8quuzZeWwr0XHj3TLtapXdUXPvktb+f0lSUxubESNdD5Qn1qLu76zOxugqAG1nd7glBZdd9Nq9VmaKosYaa/F39o+J6J29JgFzJ/JwKAn+L8L8dj0k96lZlYDEAkQYgequrSRin7LqT030W2WFbpijaEx8PgoqrnnzZ/oiq61T4V4TfdNSoHnUrH6geRFtFN6q2upowt67rPsZetWutSLXX2BsqrnryGQpXurQDR7MCRhkwV3Z7ShDp0mDqra5uHY9uwESK8IygWmt1/WSCVzy1icNPyj/x7/yj4khl143OwigHTNrJO53V1eZ5Vb8wO/6oXWvV/+IzxZO54sl72F6k67r1e4J0Vle7OlE566IFuG6u22gKAcMMs/516IwO1Q27G1Yk0chrnSs2jKKk47AU0O1nvqeTqzvKUqfs/NSWX9294l517TfW1ZbfCVw5vcFVIZnfvu98AZrHrn9MmtpSlA8yB1HrCxONSHhQknr5vVeDO+lRrmuke+u6Wz0xra+WH93ZdRttKuj0dU2Wj3S3n0m37bZhxJde2UrmVsOrnZQVG8ZR3HKImS3osEQG3baiNoysmqLrNrGR41dButjyztzwyG3f74R9KvKWOrsm44xsQZedMd6r3mp1TdczdQ2YTFaR2u8Raq3VEEdNP99y4MB39nznkRdufF/oGUC8rsFrf6xm3bYCRIadXfsKc9NVn+1dt1G37bjk1xeO6n9ccOA5/7zngPQKyR7Ij9pAZL4BoA0mFgBvB5GxN9cW6zTyS72nOrbDUVNFh+LbI3L61ofa7y60AZF2Gk4LIpsdLs0gMgd4e9et77bLc+GenoEljup+OiA8Vm5qLwjcsOeZZw5893np+WP1unC0ucOyI+5sAlH7SnJzEFkBvPElMwG4/U74xhobcFT8csOhzse8/OEMzewR1nkFj/kRBw4+u/KmzaFOdTasMM+YKY1ra1hFaAnwBotkB/Dm+Xo9wP2Hf5pwVPqlAtnS7xc/PCPH/r8oeCOwP2Gc75wh3vkGLLfym4LINg7atCvadsNVvd9mu3y2nrrAxCFyY1WqrbEBR8X3H3pIHsoPjRtyrJcrOP3q7QYcKE8aQVQzkncgaqkpaX/V9SVN9w6dlTxnxVDDTMefYXhFDTjKvy/Ys0cJSeGc2G6ff3o+opxbvA95fGzwrHkkVeYgh4FUnX11se2XW/TtaVrqHAgTmPVBjN+EI0Hghpe8K9daydK3Cw9AEPiBeB/iODyQFhBVAOjmwp8D0M2yX96vS6D6EoAmXXEfIfI2HLHn1gSSz6eqWNTFkrgpD+493oT3hmFO+U115Y08K+/GGyln1Kqu1KjV8iSGNtL71oZmHLHOzJkekrfHIE9e0Rn4uOHQz2yO/6nF3HaM6yBg/dgXfiAkFbZeLwTSZbbeJfqNbP1MIzbgiNtjB66G5DHmzjP7hliS17F2pXb/TvYYYcuYhIUrhOTIaT4nyXeUuyY3miE8MSLVcpC31pZBfJLzkGu3sfUwjdiGo5M5M4Bk6c8zT5KbU5jcty9ZPCLfbva8+OicqUFgVNAfeAha5XT4mXqARc6YlN2rdv+59/BbG46yGZ1ChQOH856xvaqKJ8nNqTg35ZiTt0vvIRghMGbB0ibPS21tCXOWzelPjOubsmTpa+6KNL9X7dof78G3bhwVv2qsJDfsT9avGurJBjUl7aX7Hib/VNCivR1Y2VtqbcFR6SgVJH+UC1eNKi9nJR/tL7nlZnpYghF06NZuw1H+23dlx32KN+Z9vn4zgL9cgb28t0Fr29prn1RK+mKNI+HCl+Q7ew68sNdawRKF8JJ5d5KKzvoG8W6CCn4iHMRM8kR/grDOQm7mOCrV6HhBGT/kE8vSSHTZld2ro07vU4tBa9vZMQ5cyV4rbAvqb8ehmlvhzBfJww3EjEvs1tZj0qFSkX90dXn1S/xra2anufosDux4XU6FawlUGJU4z+wyCryCrZvvXW3XqJaypG/rmOfdCVzcNs3WbpGXlfzMF35mQ8o8Wkez1g2sdaLjhAjiImPgzqxIlEQz1sxJWPGzfJavcskYsnG+Mqc3rYP4TZsE7aKcxQ6UoIbPzoAcVpBquuQWK9hF0Kg4k1NhRSbZyq2om4BtMxlqUHc1ZAQ+eo6KpPJtNLbKszkX11HiHbmxlYMeHftjUOvnpidfLfd03YyXMc4hPNdbU5tpsyTH1yfefN9qSDarSIpclHCOlrjemmlaDxN64hAI6k1Z0p4Pxzh1fF7OMOVybR2OxY3SeuRljvlWXjWJ+/vWNl+9kmvWMJzjYwzgfnPGuQEF6Ux1IRAg2aMijeldTs/F/Kl6iZS435y119eaECjM4PSqlzM3pSRYqoFMba1eWIUicYxrRglrdnyxYyWM4ixZJAA77tmxYkfKhJhfybX5YN+tRBPm7PjKhpgRCSnZdMYD92IYQC/qTFizk8/OF+fhjXNeTkbCtMgHdtQw3u5VSxtAMl0wcVsV5Gupm7OVhChlyUa+ONcTM2JETMKGe9GR2wexliglJWHDho17fxTFrIn5ItedUCzej7Cc7MOrP+/fD1f5HTD1UlOQtypT9JzoreKh4waI1iRejHaQNynRmAUP8isfdfnK6HBPsJMfWSZ4spH+rKQ/5zbImxNfA9xMPFlJ2XFH9q4E+XgyAb75qsyTlXQNmQd5u+ItRJ6Lt+xgsuGOOPiTH1CmGG+ZaBNvVjLYyY8p/p+6xxyKuZ0M27g+lkzAb95Fj1bS98gryOuXPiItXjPNygMPJFEYd38cmRJz5zf059VK5nZyJT8N2ixBribR1n802nM+bnlgw8hvfu0gr1WiCTH3vqdH/KeI/0YImX8UmeA1/JNJJEQjxsTs/Kyb68eYB3l94stJK9bJxuwyv3R2tlzt1awuDvq61X2nTe1ugmmEsOMbK997MELI/H2L2zRi654r2neqWdnLQO78/tW+L2zdmTpFUOznNd7CEJjP3r+yxoJUumv/PjFNkBTcWQ8Caen7VUb0x3JCK1eFnsXnrFzout+19soFhYJWqMC3nkFrTGCreMeqp92pMOZ1c7XNEOiPZ9CRRj3o61VULJKWvKK6yvMCac6RoGFjfQo8uu9Ve2RfFrbGzGdqzmpnZv+gr1UZ085RP3bgqJ9/Ms2eIBv5mc98Y8eEZfTUuBQtTCi+Xxk1/RHF0TRasyBlwze+yFejieUUWBkSqZcQ3ZX/ZE6wku9U68fbrvmO8tTXMT1liUoJGWPfrXZkhbNMMXJkFTp+fIW59IK+Xs0X6yy95s5cI6Q5C28vGUcDIN+1FuEdnxmGn4QjJHvKyxz0fSuxxzzsxVK3SIAoZhuWkwW5npSXun2CnNEnMFUEuZ6UGDPyHYpRwjrswA5yHan20vl2MNmEHdhBriZT4P7oNhb7uANTRZDryDljRrFpNmeqCIw+QYaWSZUxo7yP+55sljFIkCFlTIVU+v8BgCxltmn3vmYAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjItMTItMTFUMTU6MzM6MTQrMDA6MDDQwWP9AAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIyLTEyLTExVDE1OjMzOjE0KzAwOjAwoZzbQQAAACh0RVh0ZGF0ZTp0aW1lc3RhbXAAMjAyMi0xMi0xMVQxNTozMzoxNCswMDowMPaJ+p4AAAAtdEVYdGljYzpjb3B5cmlnaHQAQ29weXJpZ2h0IEFydGlmZXggU29mdHdhcmUgMjAxMQi6xbQAAAAxdEVYdGljYzpkZXNjcmlwdGlvbgBBcnRpZmV4IFNvZnR3YXJlIHNSR0IgSUNDIFByb2ZpbGUTDAGGAAAAOHRFWHRwZGY6SGlSZXNCb3VuZGluZ0JveAAxMTguMzkzeDU5LjE5NjctNTkuMTk2NzAzLTI4LjM0NjQ1N8pbIOsAAAATdEVYdHBkZjpWZXJzaW9uAFBERi0xLjQkMWpXAAAASnRFWHRzaWduYXR1cmUAOTU0NjU0ZjRhNDc5MzJiM2MwM2UzMGFiMWI5M2MxMWMyNmM5ZjZiNzQ4ODlmMTVkNjI2YTE4NDgxNzA5MDUyZJJNIlsAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAACkCAQAAACwLhTLAAAAAmJLR0QA/4ePzL8AAAAJcEhZcwAAAMgAAADIAGP6560AAAAHdElNRQfmDAsPIQ5+Q0fmAAAKeHpUWHRSYXcgcHJvZmlsZSB0eXBlIGljYwAAWIWdl22SZKkNRf+zCi+BTwktBwSK8P434ENWd0+33TNjOyuIzHoPhJCu7hXpn+7pH3zqUEn5fVbJPz7167ccudq1jtq115rHHDZWzX/2SVKkadPcy8gjd//TmX/xCXZ9Hv1w57R6/h9DH4/+x/lLugxt0r758u0E6omDZa3aP/8XnV8v6lQlQvn78/XNTulSZf/xfPfvzxPh/ITx63+fPxboz8+P/2Ho5+eRfzbUycyXqzV/7TCzY+j3z/9kfvr1zN8/tfbyDiwmwvtJ+puECMdV4Y2MmrV9h0a33lJvTCJKbxrLXMbvo/x3ptN/2v5vTf/6+dv06zv6/JYlPh0/yJqxkYkKb9j+efTXcWi15VYakP1diUQbD8zlu0eliPvf1dL3z+/mSaz6OVqb8RWHZr+fWM3e99b5mVfmWf8+72Oo9m/IjfmJxRYPED/Ikvxi8Uek8jP4FsUDI8MwVC6m2isLBkVL0jJ1k9v+WtlZ9HbqLBo8GHg3WPOwJ/MRDil5R1N9RQc8CdrEg4mBdxLDgGHAMLAwsHi4MLDrOySDNc4aZ41vDD3mOCw6GGBevvy+++M1TMPY5OX9KeOQmsYwRuRSB4P3DY9Km4zLUXkIsRWyXnC/YKMIi4V3yju8LhMjeFyMOXhboNaCp2UXDG1+4GJxvg/fh+/L9+U7WBCL4mwMh4Y741AvwghCO8lUYXA0qpnBS3avykNlIdmr8+ZqTCTHdWFks5gNq29yMnJ9OSIEFei0l/6WN+AVklXyo9rGLtQbI3KDd5rwTvFJL4Djf+N/jDcC3zb/u+Z2Goaw3K7nFka2hcJpmfphHApr594nCEAXSHfH447BPp36XqCCd3javafcDxOIyYNJjwvUTh7F8yAboy2gA9zHzIOjD6AygMjAq7EYG+lxxhkJbPGDNH/+OKJUzY/IBU+E7ImsLLrBnmexk2VFFn84LFluo9DgnKwpK5hQdtd24IzIVD4Y7VnZWakxJdC6eX4gLjbVmFDrBr+RJ1Uwu+Q5VgLMN084ZOLuXAtg8z+L5tU8AaMBXgN4xjGNjUx6NrVsk98g3gi4eaRs7GIsWKXkxbEWni0gsTjSomwWEFhkaBGLhZqseHnmD0Ld0MWGk7ZQtJu620ze+5UP3wR+k0EvQLCu7EDBh2cH3Q62fGn2V2YA1zF63l9Fsk9/pbbyIS6HiQfIH2fC4TfxuMDhgr5L9i7Huhr52qYcJV9CcO+lLPEoOH8A84AaAlQHsYrdUOPIcV95E6VKBjqMK5xfcdk2bvP86FtYKOTE4LsHfHtKmV7KIlpupdzJ4bRQV6X2Uar0QumUulqpzriQ+SP0ykDXCuIIATAWmPYBEQxKU0qn8Ho3RHqVPnfp60AOlz0hh1LLaHRCQwqyAVnsVMY+hVO9ait0CEVYLOJFZhTZFUd5Fqso1KC9FJVBr2FF1y1gq2homQVDFHqZvJxzlbkCYuc3Cz+Uw5FMdjFOahvonkNj0suqqyxCs1Sho1uARiqLgOJ42W2XzTE3Bjee7LPKYyAgUHzwrbs48XH34gT4QFqHKj76KMwSHUsrB2O3SLl4d4nJtV4ugLrXSpCNaLeE8JvnsaPEXfVDpcSewqvAPIE6SAOyI1UQ4OTQbL+Ipt/Kqlqr1jpGrZOfK2o9B81ZFd6qcFVt1mvzmmqLx5ZRez90Eo7G7drPetVVB5OHMJD64YxAyetTc8bU17xVuZP84pF2q6pUGQb0OOp26mxB8wdsFo6cXu2JLUYJPKJ7KmxC8eAgbcxio0X6oeOARGrdTaBlq5uJIKI+avNm1eVWx6AfhTO9HuJyVOph43PBJaC53VPFMzhcKzVTOSBcvmpYqcFRImCuNmAvim9RvWdTB0C5kz5CVDbfURu+pValtWob3u+Nma1Bzk2jtT1bI2UdX+mRWrfb+pl0Mq0N+HlM+jOvbcShODQ1UYK/bpNriEVv+kTDvOnRNktvNCBtTm/T52tWPkkyNrLNwQO6w8zSnhpHRVmiceK2BViu1fadZFQbbV9zjuS3tVNro1oaOG0wTLso0mXTiyLBJIn8lBZMoFlqcSvK2KjZ/ijykQ+hBYVCRS8HpRd/UCpcr3sQUCUe7KSHrhaJ6shhpx3tc3Uq/JEGUkZDDSmPc+nSa389oazdJZA2oqS6gR0Sh2BNJLtTyH1Cj0blmBDTZZ1OhrxoX3o6jvQN/Dfx3hjeeE39dZLafa8OpDqzUj9GMo73SxNw5Xag8KWVtMrEssd5Qg9hKxex/ageqkAKoYNBYQ5AMCqXGlCnA1ob5BFhXYOAjd6xSmPZz6bK5hjKQZ1qgVcFaZVlgy55EIyhVBIqnsYEglPPmL6HwTImBuEheVnHYtlajBhjE7VtjIvNxoDE/Mg4eHt0pnHcBtQ0rvi4+wwoHwUvAwGg1cIJLqwIG844/MubBY3iWCWi1bjkoOCPswV0SUNb+ku6denXQA9bGUV+VYTflKBQ5YKsixoYZg6FLaizzOvyLjVitsTiIWVy9KBHUNnsvBffEfip4otrK+J+6DHONqFW5cqW66CBiAdHk4DTaccQevqWS24AfLGh9AgkmGpeOEIH2YgE9QdC+9fd0skSZEPnrsQmvXOpwOwSXD9pgnQ3BAah4Lo+mWx1qU3ahgtrcbEksTQ5XeF33dQRvKo+MeRPVbjfUEP6+tcLBV4mwA50MF3j0mV1LrtrvpZiolGz+IFEMkwHAUeHEjRNqhT9PBOsz34pdhaNtemOXnQrgeGW9c5kMbE4pxhkcKdB2mb4GndSlmkuXxOpn8Rw7vDpAmPw7EBdhzUnYt5Pcu6MhmwafTO9G+0a3QbSQvNZ1kyGfEDay9DyVywGl0A59FSToqNOxggbbp8yJL1GB2UE04iDze42N47VnvAum4UDgmnrAGq4fq8wZNCcOR5qB4ShQobu2V0XtBwOui2CFk9ob89MdAiKtAr0zjBZEDSFz0ApO1VFmVOAc43FXrQqBGCBGVB2F16tiZBM2uMFwTLFaGZ8LUQfRVmbMtvXkHRfTid4Or0IWn7RjovsP/zi0X53O0qSrmulTRuyy0GwOorvMH0j9utyQurUqOTS9piL/gy/1TbEBujmxhtKm/I+3Gbgo20shqX32gNLlx8PZ2W77dfw7ENrywmgcTgtUH6UNIKmklYyXzoKURqHlmCZQPWQBIikHS4DtP3QrY++ORlo6Fz9nRtHfw0J+GjH53ZHP9jLaFCmE4vksIVvbrFYcg7iKJbDZwiH+H2326YeHIDbzMmbtq05h6ENbXG4LR3Y/iA3iTgafkBE/Z5xiNYYRw4sjj3icKYgixdsCg0xeSddZ8Um9jS/3EJ8LtqvnA4zkHA/tDwnaA9icbNBLvPmcee64/Q3Axk7GyfbhbsuMnJ7OFUIzedzxSRd+OICACSRNmA7PRbYPyQUUl0X0oRcNvGGWi997z3mdAnzktcbKF84ffSYie57RKFfKBH0MoSkWEBJ0REQdAe2hnvPDZET8pJGozmZMwEdrQ4loAGzpFi08ls1yCeFMomgxaFGbt9xj8ORlG1E+hftkQTIS62KtQAAFVJJREFUeNrtnbuO60xyx388WCwcGeAB7AfgCR3qC/wAXGCijSw/gr7AD6ADZ2PAgM4jaB5BY2BDL6ABHHpgjIDFJo4kZw6ODWmNY8PCekblgBRFSrxUX0jNpasSXdhNsvlndXV1978ioUuiERPGxABs2LACxiSs5KfOwkE+oEQxa2JWPAAjEhIANtxzL6vO4tKqTHjKPy6YkpT+WSKMhaBBz5UpwqL0fcS0wNGSSUfpxj8SZmwRhDUT4ov/xwiza9980NeoLBHSi18TpqwRhDWzS0QVx9X+mDDPPy4uq86PSQmQDFqrLBFGDf+NWSIIW+blXrd0xMUPaVFkVl8kP26GML32zQd9jcqMVqeuZPLml9CtfjnCsdWw5sfOkSYLGvRjK1M6e1DiwjFcVk3fp7PRTsqGn+WLfJVdx7hoBGyuPbYL8iplBfkou1FkJ1/5wlc2pNV/omoQKErlQXPOKGEdgkBBmiTaEkukPHZUDQydWUkdIIExoD02yMeTe4jGukPPI5WfdMUuJM1OGyRIrazgvEPWStQ9e1NTKGHNRr5c+76DvFaJYrbs+NI5IqkROys5IdjIIC0iO+6IUXbdVbGH5J3fm4huosfo1nfTBLmUgVr6ngwn5mIRdZpQmcH0EMe65cCB7+z5ziMv3Fw7svZedciWZo1V5NrmVE92p2qsb8GB5/zzngMSINkTSAZtaSYIc4tyxgVShLXnZjoU3x6R07egXiEycEsTs0XaJqXr1dyXHAPfPPocf0XEvxTf/gz44+nP6CbaR989nu0jS0NLRzfRPtpH++gl+hHd+Dud7LjDxp80RH6CsO2a/zao7+xdZU9hgzlw4Blhf2378h60qaW54cCtkH86+OzK7dBiepI5Xpek8YwcvRtBuPRvCJDstaV5PP1eNgiezmqBF7ODY7zayLxhikbghgv/hgDJXluaW16KfmmP8Oj1rAnGIDc7eIbVGKrj9EVAiTUXACRAcqCWzlwl7+ddIl1bG2quVHmo5Qiqtc4DUvpW03EQIDlIS7Pgxa8nmddrHKExGXFPibkTv2skD6eP0YJfAn/jtf4gR2lp6eg22vNronKsw5fIAw8kkcm42wDvazzbyHw24Xv+lh6oiZQRrORALS3wwsHvvJyQbxxcGhyvPnBiVrG63gUHnnlm3+DfBEgO1NL56PulhzMbTS32VK3VhdeGIAiQ7LWl+VEJDUnZ4/R2PiNzpj3M0PhaXXjtnCsBkr22NEIxEmdBT5OMJk6fdnjTwwrJ6mRhdEuEyG/9O9hBWlv6hf+Wv84//xr4t14u4R6YKo9VYXyE56i+IPCj/E5yOHet2XPIHPHL/4L6amlueOaZNY/sjwOgHq7AIICos5I9LNnN5T8BokV0AP6heFuzl+VP5JN8kkg+ySf5VP0viLE0tLT8Vn7B3/Mf/AW/k0/y5/2c3GQJhmLvjcs+iko9I8Zk+79hxTfZRd/5U36J8H/8Tv6yn8YIAmDe0lHMtHhWO+5d49FRwpqdfFYcqjC6ztOIjJnnBEUnXfucKw/qVxnlTBTl5zVr4vlR1rlANbWoqcohRF7iXxOemJGSCCQs8DxbHtSnskQyGilGpMwKKj4FNU9jnSnCk+K4zgPGWO60IS3xr53RAWZriq7d8EEbnlzN+h2SEkfk3M5eska6S3ZXM8dwJYdQokpt5F9j2UdQNqgPJaUhCk3CvCCXMia81dBXaSC5RUxMNXGJ2HLSQmy5DpB8rUpCy8RI9Qkb19vZdXf9bdRtVwja0s4TK/yKoNdROt0qJnrix1Ipxbikq4oZym67ncby4ujGriHoa1CWKPrGCj2uCpYaolzNpXWOtouBTCPZr82lBb2e6kcQFVOkQUpnr9tVhXR5fOZvipDTEzhFuYL2qYYO22nQM2932Ijp7B2xr4CYSeHmTo2GQBabhIIOqxgG6SrjiBb7yrbTyLX+2RYMOF7Ak0WISBUMCHpNZYFxXqOKkWroM7uDf12nuAyZxkxY5F/mdot6Q7f9+tWejKxII2I5RdJVfTaxFAskpKX4/bo9BUlrnZ5ZhYL2oy77UUveZZZXLs0xtKRzIrmr6rrp97lbojq7+aCgQyszHN0rxiVgHrVzuU3n4rQoZkbCiBUbdqq0jIpFSu5L3YL0LQbLydrrSUmJcwyt+Nb55N/euxd0sGelXE7mV63o8x3emCwt7hfPBAVBepEoZTl8mgTbJCO2MiZ2X6EcZBiRB1YkkWWyEFsZGpJT+trFE6QPuUO/s9CTDArJaELCgzoDWZCri9yxIR3WTg5rJccEG/nW5BvY5a+xlQGHN9dxloO4yfAD0iGt5BS/xPtBBpB8B/aA/uRgVjIa8RRs5FuUoe3kcFayP8aMIL2K7BySz1nIQFYyTCO+ZRn26Q1lJafAXQDk2xTZcEc8lD85iJXMvZHPAZJvVYYcCQxjJTPi/QDINyuyMibBt5ZhrOSaJCy1eNsSpSxZyU/9n+kXA9zMhMTXUotoRAJsXFdtfgyJRiTs2PloLXmINoyidIDp4AFW3XnI303KrEIHuPSd7uS9KaNiU4qQsdY57nayza9tqr133K7TiFHKmDExkJFvroAxyTCdyFuVfEC54gEYkZAAsOHefl/AYCHz3t9W6502pS2Y2Zaikl1kiTAmyfgqvV1r6nPfJKNsE5Sn2mKTe2VKZX9hhYpvabtSfJgdAT1Xb868VjRhaZ/4ZXkmCP+cf1n4ePBM8vOtfcCSUbFx1MsjZMYRTjrunSU1zlKF88yCunQYSoi+qx9j7H8wKrHMNPigpAgZB9EWD4RXjBGEBU8IW1fLS8yabC+n4AGUzBC2LFij5Jurh2Rxr0fKHCWDU6nsADvwe63cvNuuMAy1NBe/Qfgf4uLxO1Fe5XVMiit2hDizYx2MENeHSIqwZSQQ84QK4sxo5aow47krlZu6trXiHD1Xb9BtF8y9nQxDxOwR/q7yyBwsGzPOc1U7NHv1ek7wtK7v6XQ9WogzoRO6JmygRZkRvfOC9lv5SPs4SlwyGs7/zLNKKt+twxMkCNvTS5BDyto/ZUkF0jzhsPX0PP+gDuIa0jyh4l0quZ1YYzE2MLrjXis3fVdVLBrE/AHh95VfrAZReen5+VW68HFc0su45Z+8TKeqI0Yx7J8UVN75sQv6Tu/aa+UdHL6lcfXCIDluZiMvQWQ1jDi3kfWwMqhveXnP9ll663K06voE5hgxn6m9eDUvszVqeq285Y0iLfGvGfmB+Rtd8afqgKWsrTbWVgcsVW212Sbtc5nXzXzp8hHazLWU0sI0DnoY03NssseqmyBZ8l+25vxrebjm8rFbdrb1j9e2s20KJtuls2pKp6oJWWe0eU4R4WVjRPgNQ7JuDuFoGy2oUoUc5nV2TZl76qxUIwGyJYgaPDi7eY8mRnddyNpp3mxamjerAJMnjKlQDc/ea+VZF7NkxoxlMaG1tc0ulb/7L/VgsQFRMxGTDcF/C8Ct5j2ahyiakLXdS1opPy8lG1wwy5e+vOUg0MV6FPfUkBOk8bEbg6iNE9YGRG12yXzeo43CXplny8carPHQa7B6rTw/RcqEcaO7PGLGjBkTTePlo8K0oSbDN7h9CGAKImK2zd6bOT97K8BVOSi15M7EpEyYMW/27UkZMxmCzrv3E3Scfnb2w6I1yV2C0GK7dGkjS8e3UsSbgqgD4MZWtz2yqKO37xqbV7z7o145H9F1Tz5B2DLN39FF4bk0LJ9iitDispuBqMvSmIKoCyQsMHhhuhas6II8zcMq4mICN/PuZ4xJ89F2r6Hwzmu+6skv1quUPJea5VP8HuG/OkCk7rq7H6pJ193dlZqFT7rGy8quuzZeWwr0XHj3TLtapXdUXPvktb+f0lSUxubESNdD5Qn1qLu76zOxugqAG1nd7glBZdd9Nq9VmaKosYaa/F39o+J6J29JgFzJ/JwKAn+L8L8dj0k96lZlYDEAkQYgequrSRin7LqT030W2WFbpijaEx8PgoqrnnzZ/oiq61T4V4TfdNSoHnUrH6geRFtFN6q2upowt67rPsZetWutSLXX2BsqrnryGQpXurQDR7MCRhkwV3Z7ShDp0mDqra5uHY9uwESK8IygWmt1/WSCVzy1icNPyj/x7/yj4khl143OwigHTNrJO53V1eZ5Vb8wO/6oXWvV/+IzxZO54sl72F6k67r1e4J0Vle7OlE566IFuG6u22gKAcMMs/516IwO1Q27G1Yk0chrnSs2jKKk47AU0O1nvqeTqzvKUqfs/NSWX9294l517TfW1ZbfCVw5vcFVIZnfvu98AZrHrn9MmtpSlA8yB1HrCxONSHhQknr5vVeDO+lRrmuke+u6Wz0xra+WH93ZdRttKuj0dU2Wj3S3n0m37bZhxJde2UrmVsOrnZQVG8ZR3HKImS3osEQG3baiNoysmqLrNrGR41dButjyztzwyG3f74R9KvKWOrsm44xsQZedMd6r3mp1TdczdQ2YTFaR2u8Raq3VEEdNP99y4MB39nznkRdufF/oGUC8rsFrf6xm3bYCRIadXfsKc9NVn+1dt1G37bjk1xeO6n9ccOA5/7zngPQKyR7Ij9pAZL4BoA0mFgBvB5GxN9cW6zTyS72nOrbDUVNFh+LbI3L61ofa7y60AZF2Gk4LIpsdLs0gMgd4e9et77bLc+GenoEljup+OiA8Vm5qLwjcsOeZZw5893np+WP1unC0ucOyI+5sAlH7SnJzEFkBvPElMwG4/U74xhobcFT8csOhzse8/OEMzewR1nkFj/kRBw4+u/KmzaFOdTasMM+YKY1ra1hFaAnwBotkB/Dm+Xo9wP2Hf5pwVPqlAtnS7xc/PCPH/r8oeCOwP2Gc75wh3vkGLLfym4LINg7atCvadsNVvd9mu3y2nrrAxCFyY1WqrbEBR8X3H3pIHsoPjRtyrJcrOP3q7QYcKE8aQVQzkncgaqkpaX/V9SVN9w6dlTxnxVDDTMefYXhFDTjKvy/Ys0cJSeGc2G6ff3o+opxbvA95fGzwrHkkVeYgh4FUnX11se2XW/TtaVrqHAgTmPVBjN+EI0Hghpe8K9daydK3Cw9AEPiBeB/iODyQFhBVAOjmwp8D0M2yX96vS6D6EoAmXXEfIfI2HLHn1gSSz6eqWNTFkrgpD+493oT3hmFO+U115Y08K+/GGyln1Kqu1KjV8iSGNtL71oZmHLHOzJkekrfHIE9e0Rn4uOHQz2yO/6nF3HaM6yBg/dgXfiAkFbZeLwTSZbbeJfqNbP1MIzbgiNtjB66G5DHmzjP7hliS17F2pXb/TvYYYcuYhIUrhOTIaT4nyXeUuyY3miE8MSLVcpC31pZBfJLzkGu3sfUwjdiGo5M5M4Bk6c8zT5KbU5jcty9ZPCLfbva8+OicqUFgVNAfeAha5XT4mXqARc6YlN2rdv+59/BbG46yGZ1ChQOH856xvaqKJ8nNqTg35ZiTt0vvIRghMGbB0ibPS21tCXOWzelPjOubsmTpa+6KNL9X7dof78G3bhwVv2qsJDfsT9avGurJBjUl7aX7Hib/VNCivR1Y2VtqbcFR6SgVJH+UC1eNKi9nJR/tL7nlZnpYghF06NZuw1H+23dlx32KN+Z9vn4zgL9cgb28t0Fr29prn1RK+mKNI+HCl+Q7ew68sNdawRKF8JJ5d5KKzvoG8W6CCn4iHMRM8kR/grDOQm7mOCrV6HhBGT/kE8vSSHTZld2ro07vU4tBa9vZMQ5cyV4rbAvqb8ehmlvhzBfJww3EjEvs1tZj0qFSkX90dXn1S/xra2anufosDux4XU6FawlUGJU4z+wyCryCrZvvXW3XqJaypG/rmOfdCVzcNs3WbpGXlfzMF35mQ8o8Wkez1g2sdaLjhAjiImPgzqxIlEQz1sxJWPGzfJavcskYsnG+Mqc3rYP4TZsE7aKcxQ6UoIbPzoAcVpBquuQWK9hF0Kg4k1NhRSbZyq2om4BtMxlqUHc1ZAQ+eo6KpPJtNLbKszkX11HiHbmxlYMeHftjUOvnpidfLfd03YyXMc4hPNdbU5tpsyTH1yfefN9qSDarSIpclHCOlrjemmlaDxN64hAI6k1Z0p4Pxzh1fF7OMOVybR2OxY3SeuRljvlWXjWJ+/vWNl+9kmvWMJzjYwzgfnPGuQEF6Ux1IRAg2aMijeldTs/F/Kl6iZS435y119eaECjM4PSqlzM3pSRYqoFMba1eWIUicYxrRglrdnyxYyWM4ixZJAA77tmxYkfKhJhfybX5YN+tRBPm7PjKhpgRCSnZdMYD92IYQC/qTFizk8/OF+fhjXNeTkbCtMgHdtQw3u5VSxtAMl0wcVsV5Gupm7OVhChlyUa+ONcTM2JETMKGe9GR2wexliglJWHDho17fxTFrIn5ItedUCzej7Cc7MOrP+/fD1f5HTD1UlOQtypT9JzoreKh4waI1iRejHaQNynRmAUP8isfdfnK6HBPsJMfWSZ4spH+rKQ/5zbImxNfA9xMPFlJ2XFH9q4E+XgyAb75qsyTlXQNmQd5u+ItRJ6Lt+xgsuGOOPiTH1CmGG+ZaBNvVjLYyY8p/p+6xxyKuZ0M27g+lkzAb95Fj1bS98gryOuXPiItXjPNygMPJFEYd38cmRJz5zf059VK5nZyJT8N2ixBribR1n802nM+bnlgw8hvfu0gr1WiCTH3vqdH/KeI/0YImX8UmeA1/JNJJEQjxsTs/Kyb68eYB3l94stJK9bJxuwyv3R2tlzt1awuDvq61X2nTe1ugmmEsOMbK997MELI/H2L2zRi654r2neqWdnLQO78/tW+L2zdmTpFUOznNd7CEJjP3r+yxoJUumv/PjFNkBTcWQ8Caen7VUb0x3JCK1eFnsXnrFzout+19soFhYJWqMC3nkFrTGCreMeqp92pMOZ1c7XNEOiPZ9CRRj3o61VULJKWvKK6yvMCac6RoGFjfQo8uu9Ve2RfFrbGzGdqzmpnZv+gr1UZ085RP3bgqJ9/Ms2eIBv5mc98Y8eEZfTUuBQtTCi+Xxk1/RHF0TRasyBlwze+yFejieUUWBkSqZcQ3ZX/ZE6wku9U68fbrvmO8tTXMT1liUoJGWPfrXZkhbNMMXJkFTp+fIW59IK+Xs0X6yy95s5cI6Q5C28vGUcDIN+1FuEdnxmGn4QjJHvKyxz0fSuxxzzsxVK3SIAoZhuWkwW5npSXun2CnNEnMFUEuZ6UGDPyHYpRwjrswA5yHan20vl2MNmEHdhBriZT4P7oNhb7uANTRZDryDljRrFpNmeqCIw+QYaWSZUxo7yP+55sljFIkCFlTIVU+v8BgCxltmn3vmYAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjItMTItMTFUMTU6MzM6MTQrMDA6MDDQwWP9AAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIyLTEyLTExVDE1OjMzOjE0KzAwOjAwoZzbQQAAACh0RVh0ZGF0ZTp0aW1lc3RhbXAAMjAyMi0xMi0xMVQxNTozMzoxNCswMDowMPaJ+p4AAAAtdEVYdGljYzpjb3B5cmlnaHQAQ29weXJpZ2h0IEFydGlmZXggU29mdHdhcmUgMjAxMQi6xbQAAAAxdEVYdGljYzpkZXNjcmlwdGlvbgBBcnRpZmV4IFNvZnR3YXJlIHNSR0IgSUNDIFByb2ZpbGUTDAGGAAAAOHRFWHRwZGY6SGlSZXNCb3VuZGluZ0JveAAxMTguMzkzeDU5LjE5NjctNTkuMTk2NzAzLTI4LjM0NjQ1N8pbIOsAAAATdEVYdHBkZjpWZXJzaW9uAFBERi0xLjQkMWpXAAAASnRFWHRzaWduYXR1cmUAOTU0NjU0ZjRhNDc5MzJiM2MwM2UzMGFiMWI5M2MxMWMyNmM5ZjZiNzQ4ODlmMTVkNjI2YTE4NDgxNzA5MDUyZJJNIlsAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pr = PyxRender(fd)\n", "pr.render(\"tmp.pdf\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "1656f95a", "metadata": {}, "outputs": [], "source": [ "from pyfeyn2.render.pyx import config " ] }, { "cell_type": "code", "execution_count": 5, "id": "a490a2f1", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running in visual debug mode\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAACkCAMAAAAt+SxyAAAJJmlDQ1BpY2MAAEiJlZVnUJNZF8fv8zzphUASQodQQ5EqJYCUEFoo0quoQOidUEVsiLgCK4qINEWQRQEXXJUia0UUC4uCAhZ0gywCyrpxFVFBWXDfGZ33HT+8/5l7z2/+c+bec8/5cAEgiINlwct7YlK6wNvJjhkYFMwE3yiMn5bC8fR0A9/VuxEArcR7ut/P+a4IEZFp/OW4uLxy+SmCdACg7GXWzEpPWeGjy0wPj//CZ1dYsFzgMt9Y4eh/eexLzr8s+pLj681dfhUKABwp+hsO/4b/c++KVDiC9NioyGymT3JUelaYIJKZttIJHpfL9BQkR8UmRH5T8P+V/B2lR2anr0RucsomQWx0TDrzfw41MjA0BF9n8cbrS48hRv9/z2dFX73kegDYcwAg+7564ZUAdO4CQPrRV09tua+UfAA67vAzBJn/eqiVDQ0IgALoQAYoAlWgCXSBETADlsAWOAAX4AF8QRDYAPggBiQCAcgCuWAHKABFYB84CKpALWgATaAVnAad4Dy4Aq6D2+AuGAaPgRBMgpdABN6BBQiCsBAZokEykBKkDulARhAbsoYcIDfIGwqCQqFoKAnKgHKhnVARVApVQXVQE/QLdA66At2EBqGH0Dg0A/0NfYQRmATTYQVYA9aH2TAHdoV94fVwNJwK58D58F64Aq6HT8Id8BX4NjwMC+GX8BwCECLCQJQRXYSNcBEPJBiJQgTIVqQQKUfqkVakG+lD7iFCZBb5gMKgaCgmShdliXJG+aH4qFTUVlQxqgp1AtWB6kXdQ42jRKjPaDJaHq2DtkDz0IHoaHQWugBdjm5Et6OvoYfRk+h3GAyGgWFhzDDOmCBMHGYzphhzGNOGuYwZxExg5rBYrAxWB2uF9cCGYdOxBdhK7EnsJewQdhL7HkfEKeGMcI64YFwSLg9XjmvGXcQN4aZwC3hxvDreAu+Bj8BvwpfgG/Dd+Dv4SfwCQYLAIlgRfAlxhB2ECkIr4RphjPCGSCSqEM2JXsRY4nZiBfEU8QZxnPiBRCVpk7ikEFIGaS/pOOky6SHpDZlM1iDbkoPJ6eS95CbyVfJT8nsxmpieGE8sQmybWLVYh9iQ2CsKnqJO4VA2UHIo5ZQzlDuUWXG8uIY4VzxMfKt4tfg58VHxOQmahKGEh0SiRLFEs8RNiWkqlqpBdaBGUPOpx6hXqRM0hKZK49L4tJ20Bto12iQdQ2fRefQ4ehH9Z/oAXSRJlTSW9JfMlqyWvCApZCAMDQaPkcAoYZxmjDA+SilIcaQipfZItUoNSc1Ly0nbSkdKF0q3SQ9Lf5RhyjjIxMvsl+mUeSKLktWW9ZLNkj0ie012Vo4uZynHlyuUOy33SB6W15b3lt8sf0y+X35OQVHBSSFFoVLhqsKsIkPRVjFOsUzxouKMEk3JWilWqUzpktILpiSTw0xgVjB7mSJleWVn5QzlOuUB5QUVloqfSp5Km8oTVYIqWzVKtUy1R1WkpqTmrpar1qL2SB2vzlaPUT+k3qc+r8HSCNDYrdGpMc2SZvFYOawW1pgmWdNGM1WzXvO+FkaLrRWvdVjrrjasbaIdo12tfUcH1jHVidU5rDO4Cr3KfFXSqvpVo7okXY5upm6L7rgeQ89NL0+vU++Vvpp+sP5+/T79zwYmBgkGDQaPDamGLoZ5ht2GfxtpG/GNqo3uryavdly9bXXX6tfGOsaRxkeMH5jQTNxNdpv0mHwyNTMVmLaazpipmYWa1ZiNsulsT3Yx+4Y52tzOfJv5efMPFqYW6RanLf6y1LWMt2y2nF7DWhO5pmHNhJWKVZhVnZXQmmkdan3UWmijbBNmU2/zzFbVNsK20XaKo8WJ45zkvLIzsBPYtdvNcy24W7iX7RF7J/tC+wEHqoOfQ5XDU0cVx2jHFkeRk4nTZqfLzmhnV+f9zqM8BR6f18QTuZi5bHHpdSW5+rhWuT5z03YTuHW7w+4u7gfcx9aqr01a2+kBPHgeBzyeeLI8Uz1/9cJ4eXpVez33NvTO9e7zofls9Gn2eedr51vi+9hP0y/Dr8ef4h/i3+Q/H2AfUBogDNQP3BJ4O0g2KDaoKxgb7B/cGDy3zmHdwXWTISYhBSEj61nrs9ff3CC7IWHDhY2UjWEbz4SiQwNCm0MXwzzC6sPmwnnhNeEiPpd/iP8ywjaiLGIm0iqyNHIqyiqqNGo62ir6QPRMjE1MecxsLDe2KvZ1nHNcbdx8vEf88filhICEtkRcYmjiuSRqUnxSb7JicnbyYIpOSkGKMNUi9WCqSOAqaEyD0tandaXTlz/F/gzNjF0Z45nWmdWZ77P8s85kS2QnZfdv0t60Z9NUjmPOT5tRm/mbe3KVc3fkjm/hbKnbCm0N39qzTXVb/rbJ7U7bT+wg7Ijf8VueQV5p3tudATu78xXyt+dP7HLa1VIgViAoGN1tubv2B9QPsT8M7Fm9p3LP58KIwltFBkXlRYvF/OJbPxr+WPHj0t6ovQMlpiVH9mH2Je0b2W+z/0SpRGlO6cQB9wMdZcyywrK3BzcevFluXF57iHAo45Cwwq2iq1Ktcl/lYlVM1XC1XXVbjXzNnpr5wxGHh47YHmmtVagtqv14NPbogzqnuo56jfryY5hjmceeN/g39P3E/qmpUbaxqPHT8aTjwhPeJ3qbzJqamuWbS1rgloyWmZMhJ+/+bP9zV6tua10bo63oFDiVcerFL6G/jJx2Pd1zhn2m9az62Zp2WnthB9SxqUPUGdMp7ArqGjzncq6n27K7/Ve9X4+fVz5ffUHyQslFwsX8i0uXci7NXU65PHsl+spEz8aex1cDr97v9eoduOZ67cZ1x+tX+zh9l25Y3Th/0+LmuVvsW523TW939Jv0t/9m8lv7gOlAxx2zO113ze92D64ZvDhkM3Tlnv296/d5928Prx0eHPEbeTAaMip8EPFg+mHCw9ePMh8tPN4+hh4rfCL+pPyp/NP637V+bxOaCi+M24/3P/N59niCP/Hyj7Q/Fifzn5Ofl08pTTVNG02fn3Gcufti3YvJlykvF2YL/pT4s+aV5quzf9n+1S8KFE2+Frxe+rv4jcyb42+N3/bMec49fZf4bmG+8L3M+xMf2B/6PgZ8nFrIWsQuVnzS+tT92fXz2FLi0tI/QiyQvpNzTVQAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAZJQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAExAACwoAcUQAEwsAcVoAoGAAmmYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARSkAWzYAAAAAAAAAlFkAiFIAAQAAUDAAOyMAAAAAAAAAAAAAHREAAAAAAAAAJhcAAAAAAAAAAAAAfUsAAAAAAAAAFg0AyjYAGwcAry8AQxIAhyQAbB0AXhkADQQAvTIAoisANjIANQoAZS4ARw4AioAA1SsAtEwAk28AlGwAbVAAFhAAVz8ALyMADgsAelkABwUAhmIAQjAAOSkATDgAJw0AHRsAamIAnCAAgBoAJCEAAAAAExEAuSUADg0AAgIAVREAOQsAxygADgMAHAYABgEABQUAoiEADg0AFxYAYxQAjh0AchcAAAAAuwAA/wAAzAAA7gAAEQAAIgAAZgAARAAA3QAAqgAAdwAAGwAAbAAABQAAQgAAmQAAMwAADQQAyDUAWEUAiAAAVQAAFw8AUQAAkAAA////ZHCTOgAAAGt0Uk5TADOZ7t27iMwRZqp3IlVE2Mrm+qPdzHzyv/794vn77+r2+t/h/uzxx6/1+PiC9fDS8eN69/n9/v3+/f3+/v39b/7+/jv+/sW0w/DN4fW++rnX3NL+lkj+/on0sP698f7+/v7+/uj+6KP+/v7MGePCAAAAAWJLR0QAiAUdSAAAAAlwSFlzAAAAyAAAAMgAY/rnrQAAAAd0SU1FB+YMCw8hFxoo7yYAAAp4elRYdFJhdyBwcm9maWxlIHR5cGUgaWNjAABYhZ2XbZJkqQ1F/7MKL4FPCS0HBIrw/jfgQ1Z3T7fdM2M7K4jMeg+EkK7uFemf7ukffOpQSfl9Vsk/PvXrtxy52rWO2rXXmsccNlbNf/ZJUqRp09zLyCN3/9OZf/EJdn0e/XDntHr+H0Mfj/7H+Uu6DG3Svvny7QTqiYNlrdo//xedXy/qVCVC+fvz9c1O6VJl//F89+/PE+H8hPHrf58/FujPz4//Yejn55F/NtTJzJerNX/tMLNj6PfP/2R++vXM3z+19vIOLCbC+0n6m4QIx1XhjYyatX2HRrfeUm9MIkpvGstcxu+j/Hem03/a/m9N//r52/TrO/r8liU+HT/ImrGRiQpv2P559NdxaLXlVhqQ/V2JRBsPzOW7R6WI+9/V0vfP7+ZJrPo5WpvxFYdmv59Yzd731vmZV+ZZ/z7vY6j2b8iN+YnFFg8QP8iS/GLxR6TyM/gWxQMjwzBULqbaKwsGRUvSMnWT2/5a2Vn0duosGjwYeDdY87An8xEOKXlHU31FBzwJ2sSDiYF3EsOAYcAwsDCweLgwsOs7JIM1zhpnjW8MPeY4LDoYYF6+/L774zVMw9jk5f0p45CaxjBG5FIHg/cNj0qbjMtReQixFbJecL9gowiLhXfKO7wuEyN4XIw5eFug1oKnZRcMbX7gYnG+D9+H78v35TtYEIvibAyHhjvjUC/CCEI7yVRhcDSqmcFLdq/KQ2Uh2avz5mpMJMd1YWSzmA2rb3Iycn05IgQV6LSX/pY34BWSVfKj2sYu1BsjcoN3mvBO8UkvgON/43+MNwLfNv+75nYahrDcrucWRraFwmmZ+mEcCmvn3icIQBdId8fjjsE+nfpeoIJ3eNq9p9wPE4jJg0mPC9ROHsXzIBujLaAD3MfMg6MPoDKAyMCrsRgb6XHGGQls8YM0f/44olTNj8gFT4TsiawsusGeZ7GTZUUWfzgsWW6j0OCcrCkrmFB213bgjMhUPhjtWdlZqTEl0Lp5fiAuNtWYUOsGv5EnVTC75DlWAsw3Tzhk4u5cC2DzP4vm1TwBowFeA3jGMY2NTHo2tWyT3yDeCLh5pGzsYixYpeTFsRaeLSCxONKibBYQWGRoEYuFmqx4eeYPQt3QxYaTtlC0m7rbTN77lQ/fBH6TQS9AsK7sQMGHZwfdDrZ8afZXZgDXMXreX0WyT3+ltvIhLoeJB8gfZ8LhN/G4wOGCvkv2Lse6GvnaphwlX0Jw76Us8Sg4fwDzgBoCVAexit1Q48hxX3kTpUoGOowrnF9x2TZu8/zoW1go5MTguwd8e0qZXsoiWm6l3MnhtFBXpfZRqvRC6ZS6WqnOuJD5I/TKQNcK4ggBMBaY9gERDEpTSqfwejdEepU+d+nrQA6XPSGHUstodEJDCrIBWexUxj6FU71qK3QIRVgs4kVmFNkVR3kWqyjUoL0UlUGvYUXXLWCraGiZBUMUepm8nHOVuQJi5zcLP5TDkUx2MU5qG+ieQ2PSy6qrLEKzVKGjW4BGKouA4njZbZfNMTcGN57ss8pjICBQfPCtuzjxcffiBPhAWocqPvoozBIdSysHY7dIuXh3icm1Xi6AutdKkI1ot4Twm+exo8Rd9UOlxJ7Cq8A8gTpIA7IjVRDg5NBsv4im38qqWqvWOkatk58raj0HzVkV3qpwVW3Wa/OaaovHllF7P3QSjsbt2s961VUHk4cwkPrhjEDJ61NzxtTXvFW5k/zikXarqlQZBvQ46nbqbEHzB2wWjpxe7YktRgk8onsqbELx4CBtzGKjRfqh44BEat1NoGWrm4kgoj5q82bV5VbHoB+FM70e4nJU6mHjc8EloLndU8UzOFwrNVM5IFy+alipwVEiYK42YC+Kb1G9Z1MHQLmTPkJUNt9RG76lVqW1ahve742ZrUHOTaO1PVsjZR1f6ZFat9v6mXQyrQ34eUz6M69txKE4NDVRgr9uk2uIRW/6RMO86dE2S280IG1Ob9Pna1Y+STI2ss3BA7rDzNKeGkdFWaJx4rYFWK7V9p1kVBttX3OO5Le1U2ujWho4bTBMuyjSZdOLIsEkifyUFkygWWpxK8rYqNn+KPKRD6EFhUJFLwelF39QKlyvexBQJR7spIeuFonqyGGnHe1zdSr8kQZSRkMNKY9z6dJrfz2hrN0lkDaipLqBHRKHYE0ku1PIfUKPRuWYENNlnU6GvGhfejqO9A38N/HeGN54Tf11ktp9rw6kOrNSP0YyjvdLE3DldqDwpZW0ysSyx3lCD2ErF7H9qB6qQAqhg0FhDkAwKpcaUKcDWhvkEWFdg4CN3rFKY9nPpsrmGMpBnWqBVwVplWWDLnkQjKFUEiqexgSCU8+YvofBMiYG4SF5Wcdi2VqMGGMTtW2Mi83GgMT8yDh4e3SmcdwG1DSu+Lj7DCgfBS8DAaDVwgkurAgbzjj8y5sFjeJYJaLVuOSg4I+zBXRJQ1v6S7p16ddAD1sZRX5VhN+UoFDlgqyLGhhmDoUtqLPM6/IuNWK2xOIhZXL0oEdQ2ey8F98R+Knii2sr4n7oMc42oVblypbroIGIB0eTgNNpxxB6+pZLbgB8saH0CCSYal44QgfZiAT1B0L7193SyRJkQ+euxCa9c6nA7BJcP2mCdDcEBqHguj6ZbHWpTdqGC2txsSSxNDld4Xfd1BG8qj4x5E9VuN9QQ/r61wsFXibADnQwXePSZXUuu2u+lmKiUbP4gUQyTAcBR4cSNE2qFP08E6zPfil2Fo216Y5edCuB4Zb1zmQxsTinGGRwp0HaZvgad1KWaS5fE6mfxHDu8OkCY/DsQF2HNSdi3k9y7oyGbBp9M70b7RrdBtJC81nWTIZ8QNrL0PJXLAaXQDn0VJOio07GCBtunzIkvUYHZQTTiIPN7jY3jtWe8C6bhQOCaesAarh+rzBk0Jw5HmoHhKFChu7ZXRe0HA66LYIWT2hvz0x0CIq0CvTOMFkQNIXPQCk7VUWZU4BzjcVetCoEYIEZUHYXXq2JkEza4wXBMsVoZnwtRB9FWZsy29eQdF9OJ3g6vQhaftGOi+w//OLRfnc7SpKua6VNG7LLQbA6iu8wfSP263JC6tSo5NL2mIv+DL/VNsQG6ObGG0qb8j7cZuCjbSyGpffaA0uXHw9nZbvt1/DsQ2vLCaBxOC1QfpQ0gqaSVjJfOgpRGoeWYJlA9ZAEiKQdLgO0/dCtj745GWjoXP2dG0d/DQn4aMfndkc/2MtoUKYTi+SwhW9usVhyDuIolsNnCIf4fbfbph4cgNvMyZu2rTmHoQ1tcbgtHdj+IDeJOBp+QET9nnGI1hhHDiyOPeJwpiCLF2wKDTF5J11nxSb2NL/cQnwu2q+cDjOQcD+0PCdoD2Jxs0Eu8+Zx57rj9DcDGTsbJ9uFuy4ycns4VQjN53PFJF344gIAJJE2YDs9Ftg/JBRSXRfShFw28YZaL33vPeZ0CfOS1xsoXzh99JiJ7ntEoV8oEfQyhKRYQEnRERB0B7aGe88NkRPykkajOZkzAR2tDiWgAbOkWLTyWzXIJ4UyiaDFoUZu33GPw5GUbUT6F+2RBMhLrYq1AAARlklEQVR42u1di58jRRFOZjKTmWQyyrlmL9kDFHwgiuCDl69T9xQV8C0qAoKKr+Lg7oBDuVPx8Yc7/ZiZflR312yySSab4vdj9yazk+5vuquqq7+qHgxMGUYxAIySNB3BeHCQRrIYxmmajBg66TB4ez6ubpxMC/6PBGbbbv4OyRQm/OdwyjBKct+9RVoNx1Ge1f+eQbrt5u+QJFDWvxbTERuYmePOImLDsVSulAckFUlAndKzBCCOCuS+kn2S6p+kMN1283dIUkPX8ZEXmQqz/BA2WiMoBwepZWrN0Ixpww/ro+8euIRo0DEUg4PUUkqLo0o2vQQf0a4cvXH9yLqtOHhBmsRgXzu6/uZHzSs2lNODwdEksp1CDDbkmm6sDpJDZFzBgESuFjDadtt3SzKIdZuMA2lfTw+T25AINLPsAtL6JCZb7vnx5W13srucodGlZoLdQBqf5YjRR+XyYrFcLI8X821j00XO1uiR4mD7gNQ/HRPd8pPFovr/YgF9QvKMjVZsjh9I9fOSaG9EmwbHsNg2Oh3krI3OGo0XAlK5w9CuTlnAMftxRTZqvlhuG6aOjZ4vKlkSx2ZthcNANvcUpsV3SP1aF8BUTtWmPozNttH3LuaLyxxNGpQSFgqQ9V0R0QVaNI2Sv/QBybbR/D/+2xXan3JcaECK+zLikKybMK+APOEX+oGkbPTipALyyqCZ7mFhyxUqkBzK+6yFkUMATkTbJJC9QFI2mqnJEzkmya1O4H4ykBWUb92geuULEP+H2tD0AUnRaDE0GZQnVDU5YD7NTTqQg8F9cIt4N28U0zZ1U/qD5IloNIOyA5JHb8P9Hb5qBO8Qgb9ceT212ubSByRZo+t5XUN5QvvTo+vvQkL/phwSslY9YY7Psl9IskYvFrULzKEkNpvBMuqwJ8PuJUPJ9UzrRPQCSdlw1ujlgkMJQPkTDkpOH5QzfisRSm61lfVrn5BkjeZ2/IQ2JiUkI3KQLBELRQKU8wUH8rLSjt1HUi5oZaPFP5qFhU9qQFKqizisYxdhKJfCIW/0NV8tkrX3lkQqddnMajBcOWYhtiCUDRwZNXIbNXyBIJR8RJ7sOnSGLIFb7qbRl4+Xx4QJroBB3E1QF4ouKIdpmiRJygfgYkFcaO2MLNFGMyh5r6bogFOhKCCmfI+mBTAoZxEjvnHp12AMCLfgXBBSnw7EhBRy1C2TCSWns8E4LQumpfs2Gv3yMWZ2hmU6BovaY8BQUjgVM2P7RntGyelsghbI3FnSIO+LFPBxqSsLzpBUyFPW1BwRqABWrLx9CmOpNnQ2ZmwSkjvbFykhac1OwZjNycyEoBYKPSUGMzApnpNx8mXDUuVWe7RXSBbVgkSx4LLDA9RYEChTM2RvtnrSA0w9Ju16U8Qj94yBxZSV5gzlCVOYD2AOTHidk2JW6cFbBudSAFl2iYr0QBI2HXW/kvFzb9x+AMMpRNJNbKyZmblx60HlioyQ7xvlV5gIw0UXo8gGJcirsGIigjWtjfB6q2G8Z1w2qdk0KCvN9iAzPpERSctC89G4IcuZ1p1mmtatgdw/Lpv06hQopbXlVkJXe3HA2mqqj3vh41x95kDZ/No/oupEUk0bKNugRW6mjYQ8wKwZZ1k+AW1Qy6e2u4j7NrkVUpmEUnN/WNpIvSrh0YnAwxKIskFRTsWKSVO0/LktkFTiUJ+kCZdxKK2VMs9DnEzLCqEkGKMcxvUqPsJI1S2QZOJQn6QNl1VQfgKN3jT4BJkVWZTESYRnOB691wJJJQ71SpRwWQXl39CIYpkyhNIVO3/09/c6Rjt7Jm247Oj99zsQBLpL9wh8v6Sk77ysKvU3kLnTPRPJZD5/IJWdyv1Macy77FCvKF13z3smnVgTKwr7nv2tRpBDtCkgGZRv7KFXLqUypVR22RqkI/OtX0JnPK5Bht3YmL2SDizcNUgEn9yYKtmwVDryU5tbc7CF4ua08kaFdWuD6+BOmRS9km4ZNCtLJjZy9xBK2aXhpjyTmji0d1A2HUo2FDAc0bMgeyVq9utGNvKV2IUHyuFstot7E8NZ6WqW2pnNRBXGwWzxMhW0wGTX4m7DMW/XGItjG1UCiPznVUTfvrGhLHl8fryLRRd9ZQ/1jmwk+uqtqsE3M9Wii0VJa1FJUwXDkuTpZfi31mUPC7vs4TaqqZhcNqUNcn+8+TyHTzNcw53PWbHGMJZDtk9K6GHKcEK+VSl7mOllD7dR4WfmrD40jMAgfZSsrmAcjmTOKrjHEIdGbzaCUUSAMoV4gmqWRLMjStlDRN2f/2Y+sjfL24EVXXwIPpOx/gd4WNUdOXtwCPGU3TGEUBdLiIeDbIwg7ip7iFdCO2/2mE1UZVDeeVjShzSEPgufEz3zj7ZUqK8Q4vI5aQjxMX8OhniOlz18BKvONzxvcznE+pFfAqzoYqWuCvHT61LUAYMyEDhIJNJj/wKk3hdBEHeVPYSHkSeO4HzDGK7X+q79WrPPw6Pil9jbqCZe4Cd1NN7XzD8oG6cacWQcE+qSVpxYyuScnXOT8svN9QTdQ0qhhchjJdoYlp9o1K6FvQuQdqsOmQqusod4Zd3zXXvrb6qcNHxXG8pRo6m8AT/Fc/MFDpT4jHdfs12BId61u+xhadXcPe+62RPDJWvfpAll5do0fffNW6W/vnmrusoetrwaELO9a1/Zw0KwTRVn+HyRbJcJbDiOPcuEieL5eWIrWq6FByJVxXkWICr1HfGu/Qu06UhhSI7PeR+6mjLVijphq6048i1dM1gqsLgh0jIA3SkAGuCeBYhmU2zvOlT2UAYNJpsIGshwyigUTslB7bsTIp0a64ZIH0zOBYieTYTQt8OBrNnmAlllrkUeh2ma5qXVtsoaKrbJ6ecaNsAFURZrCs7JcNcBRxjMWHA1K/M00ix3Ocs3H1xNJcVVqJemdQXow8uVMTnRtZELIgNw59g1HMaJrevMsodC4TPZcm5RDvG0eqWTWIapaiinoOt2B0TmqHFBZEIywV+MGV5BArZa2cMsFwo/nZWV5d4u+a4Jr3D1MkrrffBH4TEDInR6W13Fp7c1TR0uiultIdNbKXsoTl6pFf50E2Fyj6gpZTzNIvoCf9lW8As/+MCafvjYtQB3jF1rNYhM73qz/h4jSSaY9HXOoucl8zQLFlr5InzJ6BNqve0xg0NkA4KOXTsPGJnejJRfrbUfMdeHxZaRNMvwc+/27p0vw0PGjaj1RjqKQhRbkxQdu/ZSCss/msD9d27KzG1Ftn0WUGrrab6V84/HTXkCnrSuPQVPm5e+Al+1bnsanjIvPQlPWLc9/jX4uv0N37Bu++e/2moCgXezQUFV/9VvfuvOdVNuwwfWNbhhXXoH7lrXboH9uLvwpnnpXfi3ddsHcNu6dvM/375qN/q8o2ghwfTa6bXr3/nuM6Z8D75vXvoBPGvd9sxz8Lx56YfwI+u2H8NPzEvPwk+t256H5+yG/Oz6tVOr1VuvjmLrtQpIpKHY2hsNEdmmCSsogb1CNMptty+FnyMtnG09K8bquAtIBCI0lm6bJjwmZ7lV6MYIov6qN4q0cftZmObYcAJZ9dR4645hYI1dfPPCejF4lMQau/xNWa0M7JBsRPTjIdxA2rPPMQxMRByAW2PXEbkzp7d4vNnOtROBznDSiZZ25wPSQs4xDEyIXPPOQM4VbjKnt/wzo6UdyGkUjM520omyfeAF0uyrU8cbELnmnRE5d4VAjendNEJrK50wScLojCedtD3yA2lC5NTxOiZOwA2InIpOn97tw9XW0mr3UTE660knzc5hCEgdInchCR0it1HVIHJ7Mfr0HmEziFhPkoqRfdIJEUpZQzUIpD69PTpehciIljshcgOuvbIZqtXJyQ7GETYDfpCJKe1JJ8vFnFUMPaYWnhc7o2Eg9ci5J4dUDRV6AFdHkgdwLZKkAy7bTHaBFIw0ZE24lZNO+K9L6jxnO/4UIFWIfARFdVvadwaXot18cVqFaWByGESrybWgFYz4z6UDSeWkE37DnIpkCSMSkCotwjuh2g+9DBflQ29lzdbFsTBj7f4FmQotMaoL1LDjBRAk7ZNOLpNtzxheoACp2Hl/Rls7YP2ZMc3uvj9xv9EQCMGlgvKXZK9cYFTXPp8vXLO7hV1AuQSqzfkVvE0CsgUwoONrAAPVnRoA/Y51AyA2jU+v3YSrA5o0B6+IoXnZh6Ry0smcfPpOh8ZEwnaGuJL15wGuZM1eDbFT5ecFOo3Jw0BgxKwIx+jK0mFxkJNOiB46nyDEmFQ1PGaDMH9X8nyD/F3B8w0zpgXPN0EnwoiqmjhGHEiu+8TxY1j1bP2kk5h8SB03NmSlPYN4VkyCu0/ZCKJiGkSowno8LMdBd7BCPC8iVFVUC0WauRQYQY0RH2ee48fq41nmHH2KnuzoSAwYUTGc5yDruwXXcBmnKYUXzTn/Vuy9kF04AQ8/eOWKHHf8lIsT161zAeQJ8aST1rmlMpJmE1JRsiJKIkp8ZpokFB5KWX0r1sKSvKyogVSPsEHGpH7SyXxRI04Esr9l1uSihwLlXACpOocIkvpJJ/UBCEEotSDA1oPOZxB6+KVxyNv5vMRmt3nSiRA5wZ0QqV+//Y2QswgxJMj0gjgJMXyEjfukE0YESKIcgdMIlvaxGFM4TJ3lE14flhngVY6wYWvwccLtaGLmgBlfTT3ve5cktHUism4hZnTwFU+wKYSuzERV1ci3+bWR7PI1i387jyfJjFK2lKgG1L2rfVUOj9VmZxhpRb3tN7gDG50dZejZYuap6rFkV1YY/HrFKVdp5NavVIt67+Tme/feuWgPWil3brXTFZFkXDjVRa/z0k53khDSVcZYkK3qV6GnqnP3J1kx4ZtTRLTVDv+WF3+D2blQAf9dEwc97IWXmhR6LsKPXPksIL5Xoi8ci/RlgFdQ4ly/ynuilMmrvwV4WV3OCiCzlZ08Mah1KE9fvf3aLpI5u4qDRvu7O68q802ubFb3TCQ6KpR87yMfYQTjfvlB5llAnNo9zjUbUO/ZRCvPtzr9o4Wy/iLtfDZ5b7/KIOt6vWgO+FKgbE5nWIMNqLfxayiVrymNRIxBz5DUUmAmSoJ308cGyHX4JY3yE1Dq7o+eHNS3Vc5YS8uKFTMje9meF0ImDnmkDZcxKG0K5w4lrHWVHOK8nLWpgorwfrZAkolDXmmXLgxKxI8spomMZ/bLdMudEJ6+aoXTKyh/3wYt1hPHVsJlf1gAHsPLymk6SXexTGKgb1Wrc3winb4Oiz/W3VtTwbpGnZxe+y91Z3gP5PT1/9W9XZcBqJkO9M3M/ZC2v2sr7CnYmxcNyLbHs7V5d3wz++IB2fR5fQWQmcK9iEBKKNe5Q5XCny4kkALKl9YYwS7gtbcuJJAMynfg5TU+7hX488UEcs195++lb7td65J1zkemK17s3W7XumSNNmLt9qtXska/Ze0+Vb9kfb50/ZANHSqxcxKva313DmvPXklNHFoZSuUB+3p8ql+UOFgYymEaOWN06p/v55G+flF0mhNKFpvlRRdTb9xY+eO+8p9XEXX7BoWy3S+YDljZQ89ehvJH/eQ/ryL69k1gD2tg7K8V7j/sHxdtVTGmoW9fdVoh2d45U/ev7cHcPy7aqmKWe/Hs9Wcakg4eQiP9o5quJna5Fx//ZGCWPRSEH1S9XrTpjTDGPJyogc0cYoDrfC0ps55xLFYVrBam5OlZXmNaIUnhEArJtl4Pb7OCRG083NGBg9f6os5rFTLuGWl3NbFL3nn4zNUgc5U9LKxjwbZf7XKzYp5GMvNy7CNbrTY3Zhr/n8mq/P9+ieZNqofhOfI+CmpOCr//IiGpjLFQLpKoOETOkwpWr9gzKURqfZ0fpypBPD+uS+7els9G2LCk1Tik5WzK4C09n/RiAVlBGVPziMViqEOO84WTjJTbXgffsg559wdpBCu6KAtKHYDsJkjRxaJLfZKDNFLXpVFcmk41cw7SiF0riVz28CC62EUXE/jLAcizSAXlX7VYYw63DkCeSU6v3ZVrxP8DMJ3oUUTXgHwAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjItMTItMTFUMTU6MzM6MjMrMDA6MDCb6VqQAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIyLTEyLTExVDE1OjMzOjIzKzAwOjAw6rTiLAAAACh0RVh0ZGF0ZTp0aW1lc3RhbXAAMjAyMi0xMi0xMVQxNTozMzoyMyswMDowML2hw/MAAAAtdEVYdGljYzpjb3B5cmlnaHQAQ29weXJpZ2h0IEFydGlmZXggU29mdHdhcmUgMjAxMQi6xbQAAAAxdEVYdGljYzpkZXNjcmlwdGlvbgBBcnRpZmV4IFNvZnR3YXJlIHNSR0IgSUNDIFByb2ZpbGUTDAGGAAAAOHRFWHRwZGY6SGlSZXNCb3VuZGluZ0JveAAxMTguMzkzeDU5LjE5NjctNTkuMTk2NzAzLTI4LjM0NjQ1N8pbIOsAAAATdEVYdHBkZjpWZXJzaW9uAFBERi0xLjQkMWpXAAAASnRFWHRzaWduYXR1cmUAODdmM2U0MTg1YTljOWE5YmZkY2EzY2E5MTUzNTE0MWQ5ZjdhZTA2YzM4YTY5M2IzNmQwYTIyNjhmMzc3OGFhZTJh01kAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUkAAACkCAMAAAAt+SxyAAAJJmlDQ1BpY2MAAEiJlZVnUJNZF8fv8zzphUASQodQQ5EqJYCUEFoo0quoQOidUEVsiLgCK4qINEWQRQEXXJUia0UUC4uCAhZ0gywCyrpxFVFBWXDfGZ33HT+8/5l7z2/+c+bec8/5cAEgiINlwct7YlK6wNvJjhkYFMwE3yiMn5bC8fR0A9/VuxEArcR7ut/P+a4IEZFp/OW4uLxy+SmCdACg7GXWzEpPWeGjy0wPj//CZ1dYsFzgMt9Y4eh/eexLzr8s+pLj681dfhUKABwp+hsO/4b/c++KVDiC9NioyGymT3JUelaYIJKZttIJHpfL9BQkR8UmRH5T8P+V/B2lR2anr0RucsomQWx0TDrzfw41MjA0BF9n8cbrS48hRv9/z2dFX73kegDYcwAg+7564ZUAdO4CQPrRV09tua+UfAA67vAzBJn/eqiVDQ0IgALoQAYoAlWgCXSBETADlsAWOAAX4AF8QRDYAPggBiQCAcgCuWAHKABFYB84CKpALWgATaAVnAad4Dy4Aq6D2+AuGAaPgRBMgpdABN6BBQiCsBAZokEykBKkDulARhAbsoYcIDfIGwqCQqFoKAnKgHKhnVARVApVQXVQE/QLdA66At2EBqGH0Dg0A/0NfYQRmATTYQVYA9aH2TAHdoV94fVwNJwK58D58F64Aq6HT8Id8BX4NjwMC+GX8BwCECLCQJQRXYSNcBEPJBiJQgTIVqQQKUfqkVakG+lD7iFCZBb5gMKgaCgmShdliXJG+aH4qFTUVlQxqgp1AtWB6kXdQ42jRKjPaDJaHq2DtkDz0IHoaHQWugBdjm5Et6OvoYfRk+h3GAyGgWFhzDDOmCBMHGYzphhzGNOGuYwZxExg5rBYrAxWB2uF9cCGYdOxBdhK7EnsJewQdhL7HkfEKeGMcI64YFwSLg9XjmvGXcQN4aZwC3hxvDreAu+Bj8BvwpfgG/Dd+Dv4SfwCQYLAIlgRfAlxhB2ECkIr4RphjPCGSCSqEM2JXsRY4nZiBfEU8QZxnPiBRCVpk7ikEFIGaS/pOOky6SHpDZlM1iDbkoPJ6eS95CbyVfJT8nsxmpieGE8sQmybWLVYh9iQ2CsKnqJO4VA2UHIo5ZQzlDuUWXG8uIY4VzxMfKt4tfg58VHxOQmahKGEh0SiRLFEs8RNiWkqlqpBdaBGUPOpx6hXqRM0hKZK49L4tJ20Bto12iQdQ2fRefQ4ehH9Z/oAXSRJlTSW9JfMlqyWvCApZCAMDQaPkcAoYZxmjDA+SilIcaQipfZItUoNSc1Ly0nbSkdKF0q3SQ9Lf5RhyjjIxMvsl+mUeSKLktWW9ZLNkj0ie012Vo4uZynHlyuUOy33SB6W15b3lt8sf0y+X35OQVHBSSFFoVLhqsKsIkPRVjFOsUzxouKMEk3JWilWqUzpktILpiSTw0xgVjB7mSJleWVn5QzlOuUB5QUVloqfSp5Km8oTVYIqWzVKtUy1R1WkpqTmrpar1qL2SB2vzlaPUT+k3qc+r8HSCNDYrdGpMc2SZvFYOawW1pgmWdNGM1WzXvO+FkaLrRWvdVjrrjasbaIdo12tfUcH1jHVidU5rDO4Cr3KfFXSqvpVo7okXY5upm6L7rgeQ89NL0+vU++Vvpp+sP5+/T79zwYmBgkGDQaPDamGLoZ5ht2GfxtpG/GNqo3uryavdly9bXXX6tfGOsaRxkeMH5jQTNxNdpv0mHwyNTMVmLaazpipmYWa1ZiNsulsT3Yx+4Y52tzOfJv5efMPFqYW6RanLf6y1LWMt2y2nF7DWhO5pmHNhJWKVZhVnZXQmmkdan3UWmijbBNmU2/zzFbVNsK20XaKo8WJ45zkvLIzsBPYtdvNcy24W7iX7RF7J/tC+wEHqoOfQ5XDU0cVx2jHFkeRk4nTZqfLzmhnV+f9zqM8BR6f18QTuZi5bHHpdSW5+rhWuT5z03YTuHW7w+4u7gfcx9aqr01a2+kBPHgeBzyeeLI8Uz1/9cJ4eXpVez33NvTO9e7zofls9Gn2eedr51vi+9hP0y/Dr8ef4h/i3+Q/H2AfUBogDNQP3BJ4O0g2KDaoKxgb7B/cGDy3zmHdwXWTISYhBSEj61nrs9ff3CC7IWHDhY2UjWEbz4SiQwNCm0MXwzzC6sPmwnnhNeEiPpd/iP8ywjaiLGIm0iqyNHIqyiqqNGo62ir6QPRMjE1MecxsLDe2KvZ1nHNcbdx8vEf88filhICEtkRcYmjiuSRqUnxSb7JicnbyYIpOSkGKMNUi9WCqSOAqaEyD0tandaXTlz/F/gzNjF0Z45nWmdWZ77P8s85kS2QnZfdv0t60Z9NUjmPOT5tRm/mbe3KVc3fkjm/hbKnbCm0N39qzTXVb/rbJ7U7bT+wg7Ijf8VueQV5p3tudATu78xXyt+dP7HLa1VIgViAoGN1tubv2B9QPsT8M7Fm9p3LP58KIwltFBkXlRYvF/OJbPxr+WPHj0t6ovQMlpiVH9mH2Je0b2W+z/0SpRGlO6cQB9wMdZcyywrK3BzcevFluXF57iHAo45Cwwq2iq1Ktcl/lYlVM1XC1XXVbjXzNnpr5wxGHh47YHmmtVagtqv14NPbogzqnuo56jfryY5hjmceeN/g39P3E/qmpUbaxqPHT8aTjwhPeJ3qbzJqamuWbS1rgloyWmZMhJ+/+bP9zV6tua10bo63oFDiVcerFL6G/jJx2Pd1zhn2m9az62Zp2WnthB9SxqUPUGdMp7ArqGjzncq6n27K7/Ve9X4+fVz5ffUHyQslFwsX8i0uXci7NXU65PHsl+spEz8aex1cDr97v9eoduOZ67cZ1x+tX+zh9l25Y3Th/0+LmuVvsW523TW939Jv0t/9m8lv7gOlAxx2zO113ze92D64ZvDhkM3Tlnv296/d5928Prx0eHPEbeTAaMip8EPFg+mHCw9ePMh8tPN4+hh4rfCL+pPyp/NP637V+bxOaCi+M24/3P/N59niCP/Hyj7Q/Fifzn5Ofl08pTTVNG02fn3Gcufti3YvJlykvF2YL/pT4s+aV5quzf9n+1S8KFE2+Frxe+rv4jcyb42+N3/bMec49fZf4bmG+8L3M+xMf2B/6PgZ8nFrIWsQuVnzS+tT92fXz2FLi0tI/QiyQvpNzTVQAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAZJQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAExAACwoAcUQAEwsAcVoAoGAAmmYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARSkAWzYAAAAAAAAAlFkAiFIAAQAAUDAAOyMAAAAAAAAAAAAAHREAAAAAAAAAJhcAAAAAAAAAAAAAfUsAAAAAAAAAFg0AyjYAGwcAry8AQxIAhyQAbB0AXhkADQQAvTIAoisANjIANQoAZS4ARw4AioAA1SsAtEwAk28AlGwAbVAAFhAAVz8ALyMADgsAelkABwUAhmIAQjAAOSkATDgAJw0AHRsAamIAnCAAgBoAJCEAAAAAExEAuSUADg0AAgIAVREAOQsAxygADgMAHAYABgEABQUAoiEADg0AFxYAYxQAjh0AchcAAAAAuwAA/wAAzAAA7gAAEQAAIgAAZgAARAAA3QAAqgAAdwAAGwAAbAAABQAAQgAAmQAAMwAADQQAyDUAWEUAiAAAVQAAFw8AUQAAkAAA////ZHCTOgAAAGt0Uk5TADOZ7t27iMwRZqp3IlVE2Mrm+qPdzHzyv/794vn77+r2+t/h/uzxx6/1+PiC9fDS8eN69/n9/v3+/f3+/v39b/7+/jv+/sW0w/DN4fW++rnX3NL+lkj+/on0sP698f7+/v7+/uj+6KP+/v7MGePCAAAAAWJLR0QAiAUdSAAAAAlwSFlzAAAAyAAAAMgAY/rnrQAAAAd0SU1FB+YMCw8hFxoo7yYAAAp4elRYdFJhdyBwcm9maWxlIHR5cGUgaWNjAABYhZ2XbZJkqQ1F/7MKL4FPCS0HBIrw/jfgQ1Z3T7fdM2M7K4jMeg+EkK7uFemf7ukffOpQSfl9Vsk/PvXrtxy52rWO2rXXmsccNlbNf/ZJUqRp09zLyCN3/9OZf/EJdn0e/XDntHr+H0Mfj/7H+Uu6DG3Svvny7QTqiYNlrdo//xedXy/qVCVC+fvz9c1O6VJl//F89+/PE+H8hPHrf58/FujPz4//Yejn55F/NtTJzJerNX/tMLNj6PfP/2R++vXM3z+19vIOLCbC+0n6m4QIx1XhjYyatX2HRrfeUm9MIkpvGstcxu+j/Hem03/a/m9N//r52/TrO/r8liU+HT/ImrGRiQpv2P559NdxaLXlVhqQ/V2JRBsPzOW7R6WI+9/V0vfP7+ZJrPo5WpvxFYdmv59Yzd731vmZV+ZZ/z7vY6j2b8iN+YnFFg8QP8iS/GLxR6TyM/gWxQMjwzBULqbaKwsGRUvSMnWT2/5a2Vn0duosGjwYeDdY87An8xEOKXlHU31FBzwJ2sSDiYF3EsOAYcAwsDCweLgwsOs7JIM1zhpnjW8MPeY4LDoYYF6+/L774zVMw9jk5f0p45CaxjBG5FIHg/cNj0qbjMtReQixFbJecL9gowiLhXfKO7wuEyN4XIw5eFug1oKnZRcMbX7gYnG+D9+H78v35TtYEIvibAyHhjvjUC/CCEI7yVRhcDSqmcFLdq/KQ2Uh2avz5mpMJMd1YWSzmA2rb3Iycn05IgQV6LSX/pY34BWSVfKj2sYu1BsjcoN3mvBO8UkvgON/43+MNwLfNv+75nYahrDcrucWRraFwmmZ+mEcCmvn3icIQBdId8fjjsE+nfpeoIJ3eNq9p9wPE4jJg0mPC9ROHsXzIBujLaAD3MfMg6MPoDKAyMCrsRgb6XHGGQls8YM0f/44olTNj8gFT4TsiawsusGeZ7GTZUUWfzgsWW6j0OCcrCkrmFB213bgjMhUPhjtWdlZqTEl0Lp5fiAuNtWYUOsGv5EnVTC75DlWAsw3Tzhk4u5cC2DzP4vm1TwBowFeA3jGMY2NTHo2tWyT3yDeCLh5pGzsYixYpeTFsRaeLSCxONKibBYQWGRoEYuFmqx4eeYPQt3QxYaTtlC0m7rbTN77lQ/fBH6TQS9AsK7sQMGHZwfdDrZ8afZXZgDXMXreX0WyT3+ltvIhLoeJB8gfZ8LhN/G4wOGCvkv2Lse6GvnaphwlX0Jw76Us8Sg4fwDzgBoCVAexit1Q48hxX3kTpUoGOowrnF9x2TZu8/zoW1go5MTguwd8e0qZXsoiWm6l3MnhtFBXpfZRqvRC6ZS6WqnOuJD5I/TKQNcK4ggBMBaY9gERDEpTSqfwejdEepU+d+nrQA6XPSGHUstodEJDCrIBWexUxj6FU71qK3QIRVgs4kVmFNkVR3kWqyjUoL0UlUGvYUXXLWCraGiZBUMUepm8nHOVuQJi5zcLP5TDkUx2MU5qG+ieQ2PSy6qrLEKzVKGjW4BGKouA4njZbZfNMTcGN57ss8pjICBQfPCtuzjxcffiBPhAWocqPvoozBIdSysHY7dIuXh3icm1Xi6AutdKkI1ot4Twm+exo8Rd9UOlxJ7Cq8A8gTpIA7IjVRDg5NBsv4im38qqWqvWOkatk58raj0HzVkV3qpwVW3Wa/OaaovHllF7P3QSjsbt2s961VUHk4cwkPrhjEDJ61NzxtTXvFW5k/zikXarqlQZBvQ46nbqbEHzB2wWjpxe7YktRgk8onsqbELx4CBtzGKjRfqh44BEat1NoGWrm4kgoj5q82bV5VbHoB+FM70e4nJU6mHjc8EloLndU8UzOFwrNVM5IFy+alipwVEiYK42YC+Kb1G9Z1MHQLmTPkJUNt9RG76lVqW1ahve742ZrUHOTaO1PVsjZR1f6ZFat9v6mXQyrQ34eUz6M69txKE4NDVRgr9uk2uIRW/6RMO86dE2S280IG1Ob9Pna1Y+STI2ss3BA7rDzNKeGkdFWaJx4rYFWK7V9p1kVBttX3OO5Le1U2ujWho4bTBMuyjSZdOLIsEkifyUFkygWWpxK8rYqNn+KPKRD6EFhUJFLwelF39QKlyvexBQJR7spIeuFonqyGGnHe1zdSr8kQZSRkMNKY9z6dJrfz2hrN0lkDaipLqBHRKHYE0ku1PIfUKPRuWYENNlnU6GvGhfejqO9A38N/HeGN54Tf11ktp9rw6kOrNSP0YyjvdLE3DldqDwpZW0ysSyx3lCD2ErF7H9qB6qQAqhg0FhDkAwKpcaUKcDWhvkEWFdg4CN3rFKY9nPpsrmGMpBnWqBVwVplWWDLnkQjKFUEiqexgSCU8+YvofBMiYG4SF5Wcdi2VqMGGMTtW2Mi83GgMT8yDh4e3SmcdwG1DSu+Lj7DCgfBS8DAaDVwgkurAgbzjj8y5sFjeJYJaLVuOSg4I+zBXRJQ1v6S7p16ddAD1sZRX5VhN+UoFDlgqyLGhhmDoUtqLPM6/IuNWK2xOIhZXL0oEdQ2ey8F98R+Knii2sr4n7oMc42oVblypbroIGIB0eTgNNpxxB6+pZLbgB8saH0CCSYal44QgfZiAT1B0L7193SyRJkQ+euxCa9c6nA7BJcP2mCdDcEBqHguj6ZbHWpTdqGC2txsSSxNDld4Xfd1BG8qj4x5E9VuN9QQ/r61wsFXibADnQwXePSZXUuu2u+lmKiUbP4gUQyTAcBR4cSNE2qFP08E6zPfil2Fo216Y5edCuB4Zb1zmQxsTinGGRwp0HaZvgad1KWaS5fE6mfxHDu8OkCY/DsQF2HNSdi3k9y7oyGbBp9M70b7RrdBtJC81nWTIZ8QNrL0PJXLAaXQDn0VJOio07GCBtunzIkvUYHZQTTiIPN7jY3jtWe8C6bhQOCaesAarh+rzBk0Jw5HmoHhKFChu7ZXRe0HA66LYIWT2hvz0x0CIq0CvTOMFkQNIXPQCk7VUWZU4BzjcVetCoEYIEZUHYXXq2JkEza4wXBMsVoZnwtRB9FWZsy29eQdF9OJ3g6vQhaftGOi+w//OLRfnc7SpKua6VNG7LLQbA6iu8wfSP263JC6tSo5NL2mIv+DL/VNsQG6ObGG0qb8j7cZuCjbSyGpffaA0uXHw9nZbvt1/DsQ2vLCaBxOC1QfpQ0gqaSVjJfOgpRGoeWYJlA9ZAEiKQdLgO0/dCtj745GWjoXP2dG0d/DQn4aMfndkc/2MtoUKYTi+SwhW9usVhyDuIolsNnCIf4fbfbph4cgNvMyZu2rTmHoQ1tcbgtHdj+IDeJOBp+QET9nnGI1hhHDiyOPeJwpiCLF2wKDTF5J11nxSb2NL/cQnwu2q+cDjOQcD+0PCdoD2Jxs0Eu8+Zx57rj9DcDGTsbJ9uFuy4ycns4VQjN53PFJF344gIAJJE2YDs9Ftg/JBRSXRfShFw28YZaL33vPeZ0CfOS1xsoXzh99JiJ7ntEoV8oEfQyhKRYQEnRERB0B7aGe88NkRPykkajOZkzAR2tDiWgAbOkWLTyWzXIJ4UyiaDFoUZu33GPw5GUbUT6F+2RBMhLrYq1AAARlklEQVR42u1di58jRRFOZjKTmWQyyrlmL9kDFHwgiuCDl69T9xQV8C0qAoKKr+Lg7oBDuVPx8Yc7/ZiZflR312yySSab4vdj9yazk+5vuquqq7+qHgxMGUYxAIySNB3BeHCQRrIYxmmajBg66TB4ez6ubpxMC/6PBGbbbv4OyRQm/OdwyjBKct+9RVoNx1Ge1f+eQbrt5u+QJFDWvxbTERuYmePOImLDsVSulAckFUlAndKzBCCOCuS+kn2S6p+kMN1283dIUkPX8ZEXmQqz/BA2WiMoBwepZWrN0Ixpww/ro+8euIRo0DEUg4PUUkqLo0o2vQQf0a4cvXH9yLqtOHhBmsRgXzu6/uZHzSs2lNODwdEksp1CDDbkmm6sDpJDZFzBgESuFjDadtt3SzKIdZuMA2lfTw+T25AINLPsAtL6JCZb7vnx5W13srucodGlZoLdQBqf5YjRR+XyYrFcLI8X821j00XO1uiR4mD7gNQ/HRPd8pPFovr/YgF9QvKMjVZsjh9I9fOSaG9EmwbHsNg2Oh3krI3OGo0XAlK5w9CuTlnAMftxRTZqvlhuG6aOjZ4vKlkSx2ZthcNANvcUpsV3SP1aF8BUTtWmPozNttH3LuaLyxxNGpQSFgqQ9V0R0QVaNI2Sv/QBybbR/D/+2xXan3JcaECK+zLikKybMK+APOEX+oGkbPTipALyyqCZ7mFhyxUqkBzK+6yFkUMATkTbJJC9QFI2mqnJEzkmya1O4H4ykBWUb92geuULEP+H2tD0AUnRaDE0GZQnVDU5YD7NTTqQg8F9cIt4N28U0zZ1U/qD5IloNIOyA5JHb8P9Hb5qBO8Qgb9ceT212ubSByRZo+t5XUN5QvvTo+vvQkL/phwSslY9YY7Psl9IskYvFrULzKEkNpvBMuqwJ8PuJUPJ9UzrRPQCSdlw1ujlgkMJQPkTDkpOH5QzfisRSm61lfVrn5BkjeZ2/IQ2JiUkI3KQLBELRQKU8wUH8rLSjt1HUi5oZaPFP5qFhU9qQFKqizisYxdhKJfCIW/0NV8tkrX3lkQqddnMajBcOWYhtiCUDRwZNXIbNXyBIJR8RJ7sOnSGLIFb7qbRl4+Xx4QJroBB3E1QF4ouKIdpmiRJygfgYkFcaO2MLNFGMyh5r6bogFOhKCCmfI+mBTAoZxEjvnHp12AMCLfgXBBSnw7EhBRy1C2TCSWns8E4LQumpfs2Gv3yMWZ2hmU6BovaY8BQUjgVM2P7RntGyelsghbI3FnSIO+LFPBxqSsLzpBUyFPW1BwRqABWrLx9CmOpNnQ2ZmwSkjvbFykhac1OwZjNycyEoBYKPSUGMzApnpNx8mXDUuVWe7RXSBbVgkSx4LLDA9RYEChTM2RvtnrSA0w9Ju16U8Qj94yBxZSV5gzlCVOYD2AOTHidk2JW6cFbBudSAFl2iYr0QBI2HXW/kvFzb9x+AMMpRNJNbKyZmblx60HlioyQ7xvlV5gIw0UXo8gGJcirsGIigjWtjfB6q2G8Z1w2qdk0KCvN9iAzPpERSctC89G4IcuZ1p1mmtatgdw/Lpv06hQopbXlVkJXe3HA2mqqj3vh41x95kDZ/No/oupEUk0bKNugRW6mjYQ8wKwZZ1k+AW1Qy6e2u4j7NrkVUpmEUnN/WNpIvSrh0YnAwxKIskFRTsWKSVO0/LktkFTiUJ+kCZdxKK2VMs9DnEzLCqEkGKMcxvUqPsJI1S2QZOJQn6QNl1VQfgKN3jT4BJkVWZTESYRnOB691wJJJQ71SpRwWQXl39CIYpkyhNIVO3/09/c6Rjt7Jm247Oj99zsQBLpL9wh8v6Sk77ysKvU3kLnTPRPJZD5/IJWdyv1Macy77FCvKF13z3smnVgTKwr7nv2tRpBDtCkgGZRv7KFXLqUypVR22RqkI/OtX0JnPK5Bht3YmL2SDizcNUgEn9yYKtmwVDryU5tbc7CF4ua08kaFdWuD6+BOmRS9km4ZNCtLJjZy9xBK2aXhpjyTmji0d1A2HUo2FDAc0bMgeyVq9utGNvKV2IUHyuFstot7E8NZ6WqW2pnNRBXGwWzxMhW0wGTX4m7DMW/XGItjG1UCiPznVUTfvrGhLHl8fryLRRd9ZQ/1jmwk+uqtqsE3M9Wii0VJa1FJUwXDkuTpZfi31mUPC7vs4TaqqZhcNqUNcn+8+TyHTzNcw53PWbHGMJZDtk9K6GHKcEK+VSl7mOllD7dR4WfmrD40jMAgfZSsrmAcjmTOKrjHEIdGbzaCUUSAMoV4gmqWRLMjStlDRN2f/2Y+sjfL24EVXXwIPpOx/gd4WNUdOXtwCPGU3TGEUBdLiIeDbIwg7ip7iFdCO2/2mE1UZVDeeVjShzSEPgufEz3zj7ZUqK8Q4vI5aQjxMX8OhniOlz18BKvONzxvcznE+pFfAqzoYqWuCvHT61LUAYMyEDhIJNJj/wKk3hdBEHeVPYSHkSeO4HzDGK7X+q79WrPPw6Pil9jbqCZe4Cd1NN7XzD8oG6cacWQcE+qSVpxYyuScnXOT8svN9QTdQ0qhhchjJdoYlp9o1K6FvQuQdqsOmQqusod4Zd3zXXvrb6qcNHxXG8pRo6m8AT/Fc/MFDpT4jHdfs12BId61u+xhadXcPe+62RPDJWvfpAll5do0fffNW6W/vnmrusoetrwaELO9a1/Zw0KwTRVn+HyRbJcJbDiOPcuEieL5eWIrWq6FByJVxXkWICr1HfGu/Qu06UhhSI7PeR+6mjLVijphq6048i1dM1gqsLgh0jIA3SkAGuCeBYhmU2zvOlT2UAYNJpsIGshwyigUTslB7bsTIp0a64ZIH0zOBYieTYTQt8OBrNnmAlllrkUeh2ma5qXVtsoaKrbJ6ecaNsAFURZrCs7JcNcBRxjMWHA1K/M00ix3Ocs3H1xNJcVVqJemdQXow8uVMTnRtZELIgNw59g1HMaJrevMsodC4TPZcm5RDvG0eqWTWIapaiinoOt2B0TmqHFBZEIywV+MGV5BArZa2cMsFwo/nZWV5d4u+a4Jr3D1MkrrffBH4TEDInR6W13Fp7c1TR0uiultIdNbKXsoTl6pFf50E2Fyj6gpZTzNIvoCf9lW8As/+MCafvjYtQB3jF1rNYhM73qz/h4jSSaY9HXOoucl8zQLFlr5InzJ6BNqve0xg0NkA4KOXTsPGJnejJRfrbUfMdeHxZaRNMvwc+/27p0vw0PGjaj1RjqKQhRbkxQdu/ZSCss/msD9d27KzG1Ftn0WUGrrab6V84/HTXkCnrSuPQVPm5e+Al+1bnsanjIvPQlPWLc9/jX4uv0N37Bu++e/2moCgXezQUFV/9VvfuvOdVNuwwfWNbhhXXoH7lrXboH9uLvwpnnpXfi3ddsHcNu6dvM/375qN/q8o2ghwfTa6bXr3/nuM6Z8D75vXvoBPGvd9sxz8Lx56YfwI+u2H8NPzEvPwk+t256H5+yG/Oz6tVOr1VuvjmLrtQpIpKHY2hsNEdmmCSsogb1CNMptty+FnyMtnG09K8bquAtIBCI0lm6bJjwmZ7lV6MYIov6qN4q0cftZmObYcAJZ9dR4645hYI1dfPPCejF4lMQau/xNWa0M7JBsRPTjIdxA2rPPMQxMRByAW2PXEbkzp7d4vNnOtROBznDSiZZ25wPSQs4xDEyIXPPOQM4VbjKnt/wzo6UdyGkUjM520omyfeAF0uyrU8cbELnmnRE5d4VAjendNEJrK50wScLojCedtD3yA2lC5NTxOiZOwA2InIpOn97tw9XW0mr3UTE660knzc5hCEgdInchCR0it1HVIHJ7Mfr0HmEziFhPkoqRfdIJEUpZQzUIpD69PTpehciIljshcgOuvbIZqtXJyQ7GETYDfpCJKe1JJ8vFnFUMPaYWnhc7o2Eg9ci5J4dUDRV6AFdHkgdwLZKkAy7bTHaBFIw0ZE24lZNO+K9L6jxnO/4UIFWIfARFdVvadwaXot18cVqFaWByGESrybWgFYz4z6UDSeWkE37DnIpkCSMSkCotwjuh2g+9DBflQ29lzdbFsTBj7f4FmQotMaoL1LDjBRAk7ZNOLpNtzxheoACp2Hl/Rls7YP2ZMc3uvj9xv9EQCMGlgvKXZK9cYFTXPp8vXLO7hV1AuQSqzfkVvE0CsgUwoONrAAPVnRoA/Y51AyA2jU+v3YSrA5o0B6+IoXnZh6Ry0smcfPpOh8ZEwnaGuJL15wGuZM1eDbFT5ecFOo3Jw0BgxKwIx+jK0mFxkJNOiB46nyDEmFQ1PGaDMH9X8nyD/F3B8w0zpgXPN0EnwoiqmjhGHEiu+8TxY1j1bP2kk5h8SB03NmSlPYN4VkyCu0/ZCKJiGkSowno8LMdBd7BCPC8iVFVUC0WauRQYQY0RH2ee48fq41nmHH2KnuzoSAwYUTGc5yDruwXXcBmnKYUXzTn/Vuy9kF04AQ8/eOWKHHf8lIsT161zAeQJ8aST1rmlMpJmE1JRsiJKIkp8ZpokFB5KWX0r1sKSvKyogVSPsEHGpH7SyXxRI04Esr9l1uSihwLlXACpOocIkvpJJ/UBCEEotSDA1oPOZxB6+KVxyNv5vMRmt3nSiRA5wZ0QqV+//Y2QswgxJMj0gjgJMXyEjfukE0YESKIcgdMIlvaxGFM4TJ3lE14flhngVY6wYWvwccLtaGLmgBlfTT3ve5cktHUism4hZnTwFU+wKYSuzERV1ci3+bWR7PI1i387jyfJjFK2lKgG1L2rfVUOj9VmZxhpRb3tN7gDG50dZejZYuap6rFkV1YY/HrFKVdp5NavVIt67+Tme/feuWgPWil3brXTFZFkXDjVRa/z0k53khDSVcZYkK3qV6GnqnP3J1kx4ZtTRLTVDv+WF3+D2blQAf9dEwc97IWXmhR6LsKPXPksIL5Xoi8ci/RlgFdQ4ly/ynuilMmrvwV4WV3OCiCzlZ08Mah1KE9fvf3aLpI5u4qDRvu7O68q802ubFb3TCQ6KpR87yMfYQTjfvlB5llAnNo9zjUbUO/ZRCvPtzr9o4Wy/iLtfDZ5b7/KIOt6vWgO+FKgbE5nWIMNqLfxayiVrymNRIxBz5DUUmAmSoJ308cGyHX4JY3yE1Dq7o+eHNS3Vc5YS8uKFTMje9meF0ImDnmkDZcxKG0K5w4lrHWVHOK8nLWpgorwfrZAkolDXmmXLgxKxI8spomMZ/bLdMudEJ6+aoXTKyh/3wYt1hPHVsJlf1gAHsPLymk6SXexTGKgb1Wrc3winb4Oiz/W3VtTwbpGnZxe+y91Z3gP5PT1/9W9XZcBqJkO9M3M/ZC2v2sr7CnYmxcNyLbHs7V5d3wz++IB2fR5fQWQmcK9iEBKKNe5Q5XCny4kkALKl9YYwS7gtbcuJJAMynfg5TU+7hX488UEcs195++lb7td65J1zkemK17s3W7XumSNNmLt9qtXska/Ze0+Vb9kfb50/ZANHSqxcxKva313DmvPXklNHFoZSuUB+3p8ql+UOFgYymEaOWN06p/v55G+flF0mhNKFpvlRRdTb9xY+eO+8p9XEXX7BoWy3S+YDljZQ89ehvJH/eQ/ryL69k1gD2tg7K8V7j/sHxdtVTGmoW9fdVoh2d45U/ev7cHcPy7aqmKWe/Hs9Wcakg4eQiP9o5quJna5Fx//ZGCWPRSEH1S9XrTpjTDGPJyogc0cYoDrfC0ps55xLFYVrBam5OlZXmNaIUnhEArJtl4Pb7OCRG083NGBg9f6os5rFTLuGWl3NbFL3nn4zNUgc5U9LKxjwbZf7XKzYp5GMvNy7CNbrTY3Zhr/n8mq/P9+ieZNqofhOfI+CmpOCr//IiGpjLFQLpKoOETOkwpWr9gzKURqfZ0fpypBPD+uS+7els9G2LCk1Tik5WzK4C09n/RiAVlBGVPziMViqEOO84WTjJTbXgffsg559wdpBCu6KAtKHYDsJkjRxaJLfZKDNFLXpVFcmk41cw7SiF0riVz28CC62EUXE/jLAcizSAXlX7VYYw63DkCeSU6v3ZVrxP8DMJ3oUUTXgHwAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjItMTItMTFUMTU6MzM6MjMrMDA6MDCb6VqQAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIyLTEyLTExVDE1OjMzOjIzKzAwOjAw6rTiLAAAACh0RVh0ZGF0ZTp0aW1lc3RhbXAAMjAyMi0xMi0xMVQxNTozMzoyMyswMDowML2hw/MAAAAtdEVYdGljYzpjb3B5cmlnaHQAQ29weXJpZ2h0IEFydGlmZXggU29mdHdhcmUgMjAxMQi6xbQAAAAxdEVYdGljYzpkZXNjcmlwdGlvbgBBcnRpZmV4IFNvZnR3YXJlIHNSR0IgSUNDIFByb2ZpbGUTDAGGAAAAOHRFWHRwZGY6SGlSZXNCb3VuZGluZ0JveAAxMTguMzkzeDU5LjE5NjctNTkuMTk2NzAzLTI4LjM0NjQ1N8pbIOsAAAATdEVYdHBkZjpWZXJzaW9uAFBERi0xLjQkMWpXAAAASnRFWHRzaWduYXR1cmUAODdmM2U0MTg1YTljOWE5YmZkY2EzY2E5MTUzNTE0MWQ5ZjdhZTA2YzM4YTY5M2IzNmQwYTIyNjhmMzc3OGFhZTJh01kAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pr = PyxRender(fd)\n", "config.getOptions().DEBUG = False\n", "config.getOptions().VDEBUG = True\n", "pr.render(\"tmp.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "id": "cbd599ab", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "#objs = 0\n", "Object layer = 1 + 1000 = 1001\n", "#objs = 1\n", "Object layer = 2 + 1000 = 1002\n", "#objs = 2\n", "Object layer = 3 + 1000 = 1003\n", "#objs = 3\n", "Object layer = 4 + 1000 = 1004\n", "#objs = 4\n", "Object layer = 5 + 0 = 5\n", "Adding label: $g_1$\n", "Labels = [, , , , , , , , ]\n", "#objs = 5\n", "Object layer = 6 + 0 = 6\n", "Adding label: $g_2$\n", "Labels = [, , , , , , , , , ]\n", "#objs = 6\n", "Object layer = 7 + 0 = 7\n", "Adding label: $g_3$\n", "Labels = [, , , , , , , , , , ]\n", "#objs = 7\n", "Object layer = 8 + 0 = 8\n", "Adding label: $g_4$\n", "Labels = [, , , , , , , , , , , ]\n", "#objs = 8\n", "Object layer = 9 + 0 = 9\n", "Final #objs = 9\n", "Depth = 1002\n", "Depth = 1002\n", "Depth = 1004\n", "Depth = 1004\n", "Depth = 5\n", "Drawing with styles = []\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Depth = 6\n", "Drawing with styles = []\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Depth = 7\n", "Drawing with styles = []\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Depth = 8\n", "Drawing with styles = []\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Depth = 9\n", "Drawing with styles = []\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n", "Displacement = (0.000000 t + -0.005000 u + 0.000000 v + 0.000000 w + 0.000000 x) m\n" ] } ], "source": [ "\n", "pr = PyxRender(fd)\n", "config.getOptions().VDEBUG = False\n", "config.getOptions().DEBUG = True\n", "pr.render(\"tmp.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "id": "8d9009aa", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 5 }