{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# pandas\n", "\n", "see: https://pandas.pydata.org/pandas-docs/stable/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from smpl import io" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Read" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = pd.read_csv(io.find_file('test_linear_data2.txt',3),delimiter=\" \")\n", "data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data['z'] = data['x']*data['y']\n", "data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data.describe()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data.plot(x='x',y='z')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## To Latex" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame({'name': ['Raphael', 'Donatello'],\n", "\n", " 'mask': ['red', 'purple'],\n", "\n", " 'weapon': ['sai', 'bo staff']})\n", "print(df.to_latex())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Needs \\usepackage{booktabs}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## pandas + uncertainties" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import uncertainties.unumpy as unp" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rdata = pd.read_csv(io.find_file('test_linear_data2.txt',3),delimiter=\" \")\n", "data = pd.DataFrame()\n", "data['x'] = unp.uarray(rdata['x'],rdata['dx'])\n", "data['y'] = unp.uarray(rdata['y'],rdata['dy'])\n", "data['z'] = data['x']*data['y']\n", "data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Error once with variance and once without:\n", "$nerr=\\sqrt{\\text{var}^2+\\text{err}^2}$" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from smpl import stat\n", "print(stat.novar_mean(data['x']))\n", "print(stat.mean(data['x']))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(data.to_latex())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## pandas + plot" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from smpl import plot\n", "plot.data(data['x'],data['y'])\n", "plot.data(data['x'],data['z'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "df0893f56f349688326838aaeea0de204df53a132722cbd565e54b24a8fec5f6" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 4 }