{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lambda and string fit functions\n", "\n", "Uses the last of the alphabetical sorted variables as the x-axis value unless xvar is set." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from smpl import plot\n", "from smpl import stat\n", "from smpl import functions as f\n", "import uncertainties.unumpy as unp\n", "import smpl" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x= np.linspace(-5,5,10)\n", "y = stat.noisy(np.exp(2*x))+stat.noisy(x)\n", "ff = plot.fit(x, y,\"exp(a*x)*phi\" ,xvar=\"a\", fmt='.', label='data', xaxis=\"x in a.u.\",yaxis=\"y in a.u.\",sigmas=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "lambda fit does not work with sigma=N, as it needs unp.exp" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x= np.linspace(-5,5,10)\n", "y = stat.noisy(np.exp(2*x))+stat.noisy(x)\n", "ff = plot.fit(x, y,lambda x,f_mu,c: unp.exp(x*f_mu)*c , fmt='.', label='data', xaxis=\"x in a.u.\",yaxis=\"y in a.u.\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x= np.linspace(-5,5,10)\n", "y = stat.noisy(np.exp(2*x))+stat.noisy(x)\n", "ff = plot.fit(x, y,lambda x,nu,rho: unp.exp(x*nu)*rho,xvar=\"nu\" , fmt='.', label='data', xaxis=\"$\\\\nu$ in a.u.\",yaxis=\"y in a.u.\",sigmas=1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x= np.linspace(-5,5,10)\n", "y = stat.noisy(np.exp(2*x))+stat.noisy(x)\n", "def e(nu,x,rho):\n", " return unp.exp(x*nu)*rho\n", "ff = plot.fit(x, y,e ,xvar=\"x\", fmt='.', label='data', xaxis=\"x in a.u.\",yaxis=\"y in a.u.\",sigmas=1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 4 }