hepi.results
Results and postprocessing for the hepi
package.
Attributes
Classes
General result class. All uncertainties are of numerical origin. |
Functions
|
Just like pdf_error but over a list of ordernames. |
|
|
|
Computes Parton Density Function (PDF) uncertainties through |
|
Just like scale_error but over a list of ordernames. |
|
|
|
Computes seven-point scale uncertainties from the results where the renormalization and factorization scales are varied by factors of 2 and relative factors of four are excluded (cf. |
|
Just like combine_error but over a list of ordernames. |
|
Combines seven-point scale uncertainties and pdf uncertainties from the results by Pythagorean addition. |
|
|
|
|
|
Module Contents
- class hepi.results.Result(lo=None, nlo=None, nlo_plus_nll=None, annlo_plus_nnll=None)[source]
Bases:
hepi.util.DictData
General result class. All uncertainties are of numerical origin.
- Variables:
LO (
double
) – Leading Order result. Defaults to None.NLO (
double
) – Next-to-Leading Order result. Defaults to None.NLO_PLUS_NLL (
double
) – Next-to-Leading Order plus Next-to-Leading Logarithm result. Defaults to None.K_LO (
double
) – LO divided by LO.K_NLO (
double
) – NLO divided by LO result.K_NLO_PLUS_NLL (
double
) – NLO+NLL divided by LO.K_aNNLO_PLUS_NNLL (
double
) – aNNLO+NNLL divided by LO.NLO_PLUS_NLL_OVER_NLO (
double
) – NLO+NLL divided by NLO.aNNLO_PLUS_NNLL_OVER_NLO (
double
) – aNNLO+NNLL divided by NLO.
Sets given and computes dependent
Attributes
.- Parameters:
lo (
double
) – corresponds toLO
.nlo (
double
) – corresponds toNLO
.nlo_plus_nll (
double
) – corresponds toNLO_PLUS_NLL
.annlo_plus_nnll (
double
) – corresponds toaNNLO_PLUS_NNLL
.
- hepi.results.pdf_errors(li, dl, ordernames=None, confidence_level=90, n_jobs=None)[source]
Just like pdf_error but over a list of ordernames.
- hepi.results.pdf_error(li, dl, ordername='LO', confidence_level=90, n_jobs=None)[source]
Computes Parton Density Function (PDF) uncertainties through
lhapdf.set.uncertainty()
.- Parameters:
li (
list
ofInput
) – Input list.dl (
dict
) –Result
dictionary with lists per entry.ordername (str) – Name of the order.
confidence_level (
double
) – Confidence Level for PDF uncertainty
- Returns:
- Modified dl with new ordername_{PDF,PDF_CENTRAL,PDF_ERRPLUS,PDF_ERRMINUS,PDF_ERRSYM} entries.
(ordername)_`PDF` contains a symmetrized
uncertainties
object.
- Return type:
dict
- hepi.results.scale_errors(li, dl, ordernames=None, n_jobs=None)[source]
Just like scale_error but over a list of ordernames.
- hepi.results.scale_error(li, dl, ordername='LO', n_jobs=None)[source]
Computes seven-point scale uncertainties from the results where the renormalization and factorization scales are varied by factors of 2 and relative factors of four are excluded (cf.
seven_point_scan()
).- Parameters:
li (
list
ofInput
) – Input list.dl (
dict
) –Result
dictionary with lists per entry.
- Returns:
- Modified dl with new ordername_{SCALE,SCALE_ERRPLUS,SCALE_ERRMINUS} entries.
ordername_SCALE contains a symmetrized
uncertainties
object.
- Return type:
dict
- hepi.results.combine_errors(dl, ordernames=None)[source]
Just like combine_error but over a list of ordernames.
- hepi.results.combine_error(dl, ordername='LO')[source]
Combines seven-point scale uncertainties and pdf uncertainties from the results by Pythagorean addition.
Note
Running
scale_errors()
andpdf_errors()
before is necessary.- Parameters:
dl (
dict
) –Result
dictionary with lists per entry.- Returns:
- Modified dl with new ordername_{COMBINED,ERRPLUS,ERRMINUS} entries.
ordername_COMBINED contains a symmetrized
uncertainties
object.
- Return type:
dict