smpl.functions.lorentz
- smpl.functions.lorentz(x, x_0, a, d, y)[source]
lorentz(x,x_0,a,d,y) = \(\frac{a}{\pi d \left(1 + \frac{\left(x - x_{0}\right)^{2}}{d^{2}}\right)} + y\)
>>> from smpl.functions import lorentz >>> from smpl import plot >>> plot.function(lorentz,0,5,3,0,xmin=-5,xmax=5)
(
Source code
,png
,hires.png
,pdf
)